Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.

To document

Abstract

Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission.

To document

Abstract

Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.

Abstract

Questions Observations in permanent forest vegetation plots in Norway and elsewhere indicate that complex changes have taken place over the period 1988–2020. These observations are summarised in the “climate-induced understorey change (CIUC)” hypothesis, i.e. that the understorey vegetation of old-growth boreal forests in Norway undergoes significant long-term changes and that these changes are consistent with the ongoing climate change as an important driver. Seven testable predictions were derived from the CIUC hypothesis. Location Norway. Methods Vegetation has been monitored in a total of 458 permanently marked plots, each 1 m2, in nine old-growth forest sites dominated by Picea abies at intervals of 5–8 years over the 32-year study period. For each of the 52 combinations of site and year, we obtained response variables for the abundance of single species, abundance and species density of taxonomic–ecological species groups and two size classes of cryptogams, and site species richness. All of these variables were subjected to linear regression modelling with site and year as predictors. Results Mean annual temperature, growing-season length and the number of days with precipitation were higher in the study period than in the preceding ca. 30-year period, resulting in increasingly favourable conditions for bryophyte growth. Site species richness decreased by 13% over the 32-year study period. On average, group abundance of vascular plants decreased by 24% (decrease in forbs: 38%). Patterns of group abundance change differed among cryptogam groups: although peat-moss abundance increased by 39%, the abundance of mosses, hepatics and lichens decreased by 13%, 49% and 67%, respectively. Group abundance of small cryptogams decreased by 61%, whereas a 13% increase was found for large cryptogams. Of 61 single species tested for abundance change, a significant decrease was found for 43 species, whereas a significant increase was found only for 6 species. Conclusions The major patterns of change in species richness, group species density and group abundance observed over the 32-year study period accord with most predictions from the CIUC hypothesis and are interpreted as direct and indirect responses to climate change, partly mediated through changes in the population dynamics of microtine rodents. The more favourable climate for bryophyte growth explains the observed increase for a few large bryophyte species, whereas the decrease observed for small mosses and hepatics is interpreted as an indirect amensalistic effect, brought about by shading and burial in mats of larger species and accelerated by reduced fine-scale disturbance by microtine rodents. Indirect effects of a thicker moss mat most likely drive the vascular plant decline although long-term effects of tree-stand dynamics and former logging cannot be completely ruled out. Our results suggest that the ongoing climate change has extensive, cascading effects on boreal forest ecosystems. The importance of long time-series of permanent vegetation plots for detecting and understanding the effects of climate change on boreal forests is emphasised.

To document

Abstract

This study quantifies golf course pesticide risk in five regions across the US (Florida, East Texas, Northwest, Midwest, and Northeast) and three countries in Europe (UK, Denmark, and Norway) with the objective of determining how pesticide risk on golf courses varied as a function of climate, regulatory environment, and facility-level economic factors. The hazard quotient model was used to estimate acute pesticide risk to mammals specifically. Data from 68 golf courses are included in the study, with a minimum of at least five golf courses in each region. Though the dataset is small, it is representative of the population at confidence level of 75 % with a 15 % margin of error. Pesticide risk appeared to be similar across US regions with varied climates, and significantly lower in the UK, and lowest in Norway and Denmark. In the Southern US (East Texas and Florida), greens contribute most to total pesticide risk while in nearly all other regions fairways make the greatest contribution to overall pesticide risk. The relationship between facility-level economic factors such as maintenance budget was limited in most regions of the study, except in the Northern US (Midwest, Northwest, and Northeast) where maintenance and pesticide budget correlated to pesticide risk and use intensity. However, there was a strong relationship between regulatory environment and pesticide risk across all regions. Pesticide risk was significantly lower in Norway, Denmark, and the UK, where twenty or fewer active ingredients were available to golf course superintendents, than it was in US where depending on the state between 200 and 250 pesticide active ingredients were registered for use on golf courses.