Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

To investigate the possible family influence on sea lice grazing of lumpfish on Atlantic salmon, ten families of lumpfish (N = 480) with a mean (± SD) weight of 54.8 ± 9.2 g were distributed among ten sea cages (5 × 5 × 5 m) each stocked with 400 Atlantic salmon with a mean (± SD) weight of 621.4 ± 9.2 g. All the ten cages were stocked with 48 lumpfish (12% stocking density). The stocking of cages was such that each cage consisted of two random families where full- and paternal half-sib families were randomly allocated to the different cages. There were clear differences in sea lice grazing efficacy, growth and cataract prevalence between the ten families assessed in this study. Lumpfish from families 2, 6 and 10 had the lowest mean weights but showed comparable growth rates compared to the other families throughout the study and this may be as a direct result of genetic influence. In addition, fish from these families had a significantly higher incidence of lice grazing of both L. salmonis and C. elongatus compared to the other families. Using mixed linear model to analyse the data revealed significant family and paternal effect on sea lice grazing. There was a trend for a reduction in sea lice grazing with increased size within each family. The results indicated that it was the smallest size classes of lumpfish (40–140 g) which exhibited higher sea lice grazing potential compared to the larger size classes within families. There were no clear differences in the lice grazing potential between male and female lumpfish within and between families. Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus can be enhanced using targeted family production and if this behaviour has a genetic basis it may further enhanced through selection and targeted breeding programs.

To document

Abstract

Knowledge about the connectivity among natural populations is essential to identify management units for effective conservation actions. Conservation-minded management has led to the recovery of large carnivore populations in northern Europe, possibly restoring connectivity between the two separated, but expanding brown bear (Ursus arctos) populations on the Scandinavian peninsula to the west and Karelia, a part of the large Eurasian population, to the east. The degree of connectivity between these populations has been poorly understood, therefore we investigated the extent of connectivity between the two populations using autosomal microsatellites and Y chromosome haplotypes in 924 male bears (the dispersing sex), sampled during a period of 12 years (2005–2017) across the transborder area where these two populations meet. Our results showed that the two populations are not genetically isolated as reported in earlier studies. We detected recent asymmetrical gene flow at a rate (individuals per generation) of 4.6–5.5 (1%) from Karelia into Scandinavia, whereas the rate was approximately 27.1–34.5 (8%) in the opposite direction. We estimated historical gene flow of effective number of migrants to be between 1.7 and 2.5 between the populations. Analyses of Y chromosome markers supported these results. Successful recovery and expansion of both populations led to the restoration of connectivity, however, it is asymmetric, possibly due to different recovery histories and population densities. By aligning monitoring between neighboring countries, we were able to better understand the biological processes across the relevant spatial scale. Brown bear Genetic structure Male gene flow Microsatellites Migration Recovery Ursus arctos Wildlife monitoring Y chromosome

To document

Abstract

Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.

To document

Abstract

In recent decades, a combination of increasing demand and economic globalisation has created a global market for elasmobranch products, especially the highly prized shark fins for Asian markets. Morphological species identification, as well as traditional cytochrome c oxidase subunit I (COI) barcoding of shark fins and other products, become challenging when in a processed state (such as dried or bleached shark fins). Here a mini-barcoding multiplex assay was applied to determine the species of origin in case studies from southern Africa involving confiscated shark fins in different states of processing. This highlights that the illegal shark fin trade in southern Africa to a large extent comprises threatened species. Matching of sequences of the confiscated fins against public databases revealed several threatened species, including the CITES-listed species Carcharodon carcharias, Carcharhinus longimanus, Isurus oxyrinchus, Rhynchobatus djiddensis and Sphyrna lewini. The findings highlight the need for improved trade monitoring, such as to eliminate illegal trade in shark fins, which can in part be achieved through more widespread genetic sampling of internationally traded products. However, a major limitation to DNA barcoding in general lies in the lack of curated voucher specimens available on public databases. To facilitate the application of molecular methods in a more comprehensive evaluation of elasmobranch trade regionally, a concerted effort to create reliable curated sequence data is recommended.

To document

Abstract

Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name.

To document

Abstract

Broad tapeworms (Diphyllobothriidea) are parasites whose adults are capable of infecting a wide range of freshwater, marine and terrestrial tetrapods including humans. Previous works examining the evolution of habitat and host use in this group have been hampered by the lack of a well-resolved phylogeny. In order to produce a robust phylogenetic framework for diphyllobothriideans, we sequenced the complete mitochondrial genome of 13 representatives, carefully chosen to cover the major clades, and two outgroup species representing the Spathebothriidea and Haplobothriidea. In addition, complementary data from the nuclear ribosomal operon was sequenced for 10 representative taxa. Mitogenomes and ssrDNA and lsrDNA were used towards elucidating the phylogenetic framework for the Diphyllobothriidea. The Cephalochlamydidae is confirmed as the earliest diverging diphyllobothriidean lineage, and Solenophoridae and Diphyllobothriidae are sister groups. We infer a probable freshwater origin of the diphyllobothriideans. The ancestral condition for life cycle complexity could not be unambiguously resolved. However, we infer exclusive use of a three-host life cycle following the origin of the Solenophoridae + Diphyllobothriidae. Regarding definitive host use, although we infer reptiles as the most likely ancestral condition, this result should be revisited with a more densely sampled phylogeny in future studies. Freshwater habitat is used by the early diverging lineages within the Solenophoridae + Diphyllobothriidae clade. For the latter, habitat use shifts between freshwater and marine environments, and definitive host use includes marine and terrestrial mammals and birds. We use mitochondrial genomes to distinguish Schistocephalus species occurring in different species of sticklebacks and demonstrate conspecificity of Ligula cf. intestinalis specimens collected from two Fennoscandian ringed seal subspecies.