Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

With the impact of the COVID-19 pandemic globally and the energy as well as environmental crises we are facing, achievement of the UN sustainable development goals (SDGs), including SDG2, zero hunger, by 2030, has become very challenging. Sustainable food production and supply is a daunting task requiring the international community to work together to improve agricultural productivity with minimum climate and environmental footprint. Through the support of the Norwegian government’s Ministry of Foreign Affairs to the Sinograin I and Sinograin II projects, Norwegian and Chinese partners have established successful collaboration on food security and sustainable agricultural development. The important results achieved and the experience obtained are shared in this book describing the technologies in-depth and the lessons learnt in detail. Readers are provided with insight into the decade-long fruitful collaboration on agriculture between Norway and China, the similarities and differences in Chinese and Norwegian agriculture, the outcomes of technology implementation in selected regions in China, the benefits of good extension services to farmers in Norway and China, as well as future directions for further collaboration and development of agricultural technologies. This book aims to provide valuable information to all stakeholder groups from policy-makers, to the agro-technology industry, to farmers.

To document

Abstract

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with “humanized” N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.

To document

Abstract

Chlorella vulgaris is a freshwater microalga that synthesises large amounts of saturated lipids, which makes it suitable for production of bioenergy and biofuels. Since its cultivation usually requires freshwater, it competes with agriculture, economic development and ecological conservation for this limited natural resource. This study investigated the possibility of the partial replacement of freshwater by seawater (50 %) in the growth medium for a more sustainable biomass and lipid production. Chlorella vulgaris 211-11b was cultivated as shake-flask cultures in Bold's Basal Medium (BBM) formulated with 50 % freshwater and 50 % seawater under photoautotrophic, mixotrophic and heterotrophic conditions for eight days with glucose as organic carbon source in the latter two cases. The alga's best growth performance and highest lipid contents (49 % DW−1), dominated by palmitioleic and oleic acid, occurred under mixotrophic rather than photoautotrophic and heterotrophic conditions. This study demonstrates a more economic and ecologically sustainable biomass and lipid production of C. vulgaris by saving 50 % freshwater, which is available for other purposes.