Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

Plant diseases impair yield and quality of crops and threaten the health of natural plant communities. Epidemiological models can predict disease and inform management. However, data are scarce, since traditional methods to measure plant diseases are resource intensive and this often limits model performance. Optical sensing offers a methodology to acquire detailed data on plant diseases across various spatial and temporal scales. Key technologies include multispectral, hyperspectral and thermal imaging, and light detection and ranging; the associated sensors can be installed on ground-based platforms, uncrewed aerial vehicles, aeroplanes and satellites. However, despite enormous potential for synergy, optical sensing and epidemiological modelling have rarely been integrated. To address this gap, we first review the state-of-the-art to develop a common language accessible to both research communities. We then explore the opportunities and challenges in combining optical sensing with epidemiological modelling. We discuss how optical sensing can inform epidemiological modelling by improving model selection and parameterisation and providing accurate maps of host plants. Epidemiological modelling can inform optical sensing by boosting measurement accuracy, improving data interpretation and optimising sensor deployment. We consider outstanding challenges in: A) identifying particular diseases; B) data availability, quality and resolution, C) linking optical sensing and epidemiological modelling, and D) emerging diseases. We conclude with recommendations to motivate and shape research and practice in both fields. Among other suggestions, we propose to standardise methods and protocols for optical sensing of plant health and develop open access databases including both optical sensing data and epidemiological models to foster cross-disciplinary work.

To document

Abstract

Empirical field data and simulation models are often used separately to monitor and analyse the dynamics of insect pest populations over time. Greater insight may be achieved when field data are used directly to parametrize population dynamic models. In this paper, we use a differential evolution algorithm to integrate mechanistic physiologicalbased population models and monitoring data to estimate the population density and the physiological age of the first cohort at the start of the field monitoring. We introduce an ad hoc temperature-driven life-cycle model of Bemisia tabaci in conjunction with field monitoring data. The likely date of local whitefly invasion is estimated, with a subsequent improvement of the model’s predictive accuracy. The method allows computation of the likely date of the first field incursion by the pest and demonstrates that the initial physiological age somewhat neglected in prior studies can improve the accuracy of model simulations. Given the increasing availability of monitoring data and models describing terrestrial arthropods, the integration of monitoring data and simulation models to improve model prediction and pioneer invasion date estimate will lead to better decision-making in pest management.