Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
No abstract has been registered
Authors
Paal KrokeneAbstract
No abstract has been registered
Abstract
Bark beetles and their symbiotic bluestain fungi kill more trees than all other natural factors and cause great economic losses in Norway spruce and other conifers. The tree's natural defenses are the most important factor maintaining bark beetle-fungus complexes at low, endemic levels. Spraying Norway spruce trees with the plant hormone methyl jasmonate (MeJA) primes tree defenses without eliciting notable induced defenses, but enables the trees to respond much more quickly and strongly when challenged by bark beetles or fungi several weeks after treatment. This phenomenon, known as defense priming, is a form of acquired resistance that enables cost-effective and vigorous defense responses. In field experiments with 50-year-old clonal spruce trees terpene concentrations in the bark increased 60-fold within 24 h after mechanical wounding of MeJA primed trees, compared with a 13-fold increase in unprimed control trees. We also observed altered transcriptional patterns in primed trees using Illumina deep transcriptome sequencing. When wounded, primed trees launched vigorous induced defenses with significant differential regulation of gene transcripts, such as those involved in phenylpropanoid synthesis leading to lignification. Resistance-like genes, such as the NB-LRR coding genes, are also more rapidly induced in primed than in unprimed trees. Transcriptome results from primed but unwounded trees indicate an alteration in the state of the chromatin, resembling changes associated with the activity of the epigenetic machinery creating long-lasting epigenetic marks. We do not know yet how long the primed state is activated in Norway spruce, but our data so far indicate that it may last for at least 3 years.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
We present a methodology for distinguishing between three types of animal movement behavior (foraging, resting, and walking) based on high-frequency tracking data. For each animal we quantify an individual movement path. A movement path is a temporal sequence consisting of the steps through space taken by an animal. By selecting a set of appropriate movement parameters, we develop a method to assess movement behavioral states, reflected by changes in the movement parameters. The two fundamental tasks of our study are segmentation and clustering. By segmentation, we mean the partitioning of the trajectory into segments, which are homogeneous in terms of their movement parameters. By clustering, we mean grouping similar segments together according to their estimated movement parameters. The proposed method is evaluated using field observations (done by humans) of movement behavior. We found that on average, our method agreed with the observational data (ground truth) at a level of 80.75% ± 5.9% (SE).
Authors
Rodrigo B. Onofre J. B. Gatto M. Marin David M. Gadoury Arne Stensvand Mark Rea Andrew Bierman Natalia A. PeresAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ari Hietala Isabella Børja Hugh Cross Nina Elisabeth Nagy Halvor Solheim Volkmar Timmermann Adam Vivian-SmithAbstract
European ash (Fraxinus excelsior), a keystone species with wide distribution and habitat range in Europe, is threatened at a continental scale by an invasive alien ascomycete, Hymenoscyphus fraxineus. In its native range of Asia, this fungus is a leaf endophyte with weak parasitic capacity and robust saprobic competence in local ash species that are closely related to European ash. In European ash, H. fraxineus has a similar functional role as in Asia, but the fungus also aggressively kills shoots, resulting in crown dieback and tree death. H. fraxineus is a typical invasive species, as its spread relies on high propagule pressure. While crown dieback of European ash is the most obvious symptom of ash dieback, the annual colonization of ash leaves is a crucial key dependency for the invasiveness of H. fraxineus, since its fruiting bodies are formed on overwintered leaf vein tissues in soil debris. Leaves of European ash host a wide range of indigenous epiphytes, endophytes, facultative parasites and biotrophic fungi, including Hymenoscyphus albidus, a relative of H. fraxineus that competes for the same sporulation niche as the invader. At face value, leaves of European ash are colonized by a large and diverse indigenous mycobiome. In order to understand why this invader became successful in Europe, we discuss and summarize the current knowledge of diversity, seasonal dynamics and traits of H. fraxineus and indigenous fungi associated with leaves of European ash.