Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

Abstract

The aim of the research project is to gain new knowledge about local production of protein feed for monogastric animals in organic farming, deriving from forage legumes. New knowledge will contribute to strengthen the agricultural sector in Europe as a whole, by improved utilisation of biological resources and competency on local food systems.

Abstract

Knowledge about the botanical composition of grassland for silage is important regarding composition of seed mixtures, control of weeds, choice of harvest times and feeding strategies. The botanical composition of 185 fields in the mountain regions of southern Norway was examined using the dryweight rank method. The survey shows that the youngest grasslands (age 1 - 3 years) were dominated by the sown species with Phleum pratense L. the species with the highest proportion in the sward. In 4 - 6 year old grasslands, the proportion of sown species was reduced with the exception of Poa pratensis L., and Elytrigia repens L. had the highest proportion of unsown species. The proportion of Festuca pratensis (Huds.) was reduced at the same rate as Phleum pratense L. In grasslands of greater age (> 6 years) Poa pratensis L. and Elytrigia repens L. had the highest occurrence. The content of herbs increased with age, and Ranunculus repens L. and Taraxacum officinale F.H. Wigg were the most frequent species. The average clover content was < 6% of DM yield. The impact of Elytrigia repens L. on forage yield and quality should be further examined due to the high occurrence. Poa pratensis L. or other long-lasting grass species should be included in seed mixtures for this region when the grassland is intended to last more than three years.

To document

Abstract

Biogeography has traditionally focused on the spatial distribution and abundance of species. Both are driven by the way species interact with one another, but only recently community ecologists realized the need to document their spatial and temporal variation. Here, we call for an integrated approach, adopting the view that community structure is best represented as a network of ecological interactions, and show how it translates to biogeography questions. We propose that the ecological niche should encompass the effect of the environment on species distribution (the Grinnellian dimension of the niche) and on the ecological interactions among them (the Eltonian dimension). Starting from this concept, we develop a quantitative theory to explain turnover of interactions in space and time – i.e. a novel approach to interaction distribution modeling. We apply this framework to host–parasite interactions across Europe and find that two aspects of the environment (temperature and precipitation) exert a strong imprint on species co-occurrence, but not on species interactions. Even where species co-occur, interaction proves to be stochastic rather than deterministic, adding to variation in realized network structure. We also find that a large majority of host-parasite pairs are never found together, thus precluding any inferences regarding their probability to interact. This first attempt to explain variation of network structure at large spatial scales opens new perspectives at the interface of species distribution modeling and community ecology.