Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Håvard SteinshamnAbstract
No abstract has been registered
Authors
Line JohansenAbstract
No abstract has been registered
Authors
Line JohansenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Yupeng Zhang Guangxun Fan Tuomas Toivainen Igor A. Yakovlev Timo Hytönen Paal Krokene Paul Eivind Grini Carl Gunnar FossdalAbstract
Climate change is one of the greatest challenges for the biosphere. As sessile organisms, plants must adapt quickly to keep pace with the rapidly changing climatic conditions. Epigenetic memory is one mechanism which would provide sufficient plasticity under rapid climate change and enable long-lived organisms to survive long enough to adapt by classical genetic selection. In Norway spruce, the timing of bud burst and bud set are regulated by an epigenetic memory established by the temperature sum endured during embryogenesis. The resulting epitypes display a life-long shift in seasonal timing of the bud phenology, a trait previously presumed to be under strict classical selection and highly heritable. However, Norway spruce is a difficult plant to study because it has a very long generation time and an extensive genome size. We therefore seek to find a suitable perennial model plant to study the phenomenon of epigenetic climatic memory. Woodland strawberry (Fragaria vesca) may be an ideal model to research the role of epigenetic memory on plant phenology. Fragaria vesca is a perennial plant with a small well-characterized genome, a short sexual reproduction cycle and can also propagate asexually trough clonal daughter plants formed by stolons. We will explore whether the temperature sum experienced during sexual and asexual reproduction impact on the phenology of Fragaria vesca and use this as a model to decipher the molecular mechanism underlying epigenetic memory in plants.
Authors
Abdelhameed ElameenAbstract
No abstract has been registered
Abstract
Norway is strongly committed to the Paris Climate Agreement with an ambitious goal of 40% reduction in greenhouse gas emission by 2030. The land sector, including agriculture and forestry, must critically contribute to this national target. Beyond emission reduction, the land sector has the unique capacity to actively removing CO2 from the atmosphere through biological carbon storage in biomass and in soils. Soils are the largest reservoir of terrestrial carbon, and relatively small changes in soil carbon content can have an amplified mitigation effect on the Earth’s climate. Therefore, improved management of soils for carbon storage is receiving a lot of attention, for example through international political initiatives such as the “4-permill” initiative. However, in Norway, many mitigation measures targeting soil carbon might negatively impact food production and economic activity. For example, soil carbon storage can be increased by shifting from cereal crop production to grasslands, but Norway already has abundant grassland and a comparatively small area dedicated to cereals. Another such issue is cultivation on drained peatland, where food is produced at the expense of large losses of soil carbon as CO2 to the atmosphere. Therefore, there is a need to look for win-win solutions for soil carbon storage, which benefit both food production and climate mitigation. Large-scale conversion of agricultural and forest waste biomass to biochar is such an option, and is considered the activity with the largest potential for soil carbon sequestration in Norway. Biochar has been demonstrated to have a mean residence time exceeding 100 years in Norwegian field conditions (Rasse et al, 2017), and no negative effects on plant and soils has been observed. However, despite the convincing benefits of biochar as a climate mitigation solution, it has not yet advanced much beyond the research stage, notably because its effect on yield are too modest. Here, we will first present the comparative advantage of biochar technology as compared to traditional agronomy methods for large-scale C storage in Norwegian agricultural soils. We will further discuss the need for developing innovations in pyrolysis and nutrient-rich waste recycling leading to biochar-fertilizer products as win-win solution for carbon storage and food production.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Andrew D. Armitage Erik Lysøe Charlotte F. Nellist Laura A. Lewis Liliana M. Cano Richard J. Harrison May Bente BrurbergAbstract
The oomycete pathogen Phytophthora cactorum causes crown rot, a major disease of cultivated strawberry. We report the draft genome of P. cactorum isolate 10300, isolated from symptomatic Fragaria x ananassa tissue. Our analysis revealed that there are a large number of genes encoding putative secreted effectors in the genome, including nearly 200 RxLR domain containing effectors, 77 Crinklers (CRN) grouped into 38 families, and numerous apoplastic effectors, such as phytotoxins (PcF proteins) and necrosis inducing proteins. As in other Phytophthora species, the genomic environment of many RxLR and CRN genes differed from core eukaryotic genes, a hallmark of the two-speed genome. We found genes homologous to known Phytophthora infestans avirulence genes including Avr1, Avr3b, Avr4, Avrblb1 and AvrSmira2 indicating effector sequence conservation between Phytophthora species of clade 1a and clade 1c. The reported P. cactorum genome sequence and associated annotations represent a comprehensive resource for avirulence gene discovery in other Phytophthora species from clade 1 and, will facilitate effector informed breeding strategies in other crops.