Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Detarioideae is well known for its high diversity of floral traits, including flower symmetry, number of organs, and petal size and morphology. This diversity has been characterized and studied at higher taxonomic levels, but limited analyses have been performed among closely related genera with contrasting floral traits due to the lack of fully resolved phylogenetic relationships. Here, we used four representative transcriptomes to develop an exome capture (target enrichment) bait for the entire subfamily and applied it to the Anthonotha clade using a complete data set (61 specimens) representing all extant floral diversity. Our phylogenetic analyses recovered congruent topologies using ML and Bayesian methods. Anthonotha was recovered as monophyletic contrary to the remaining three genera (Englerodendron, Isomacrolobium and Pseudomacrolobium), which form a monophyletic group sister to Anthonotha. We inferred a total of 35 transitions for the seven floral traits (pertaining to flower symmetry, petals, stamens and staminodes) that we analyzed, suggesting that at least 30% of the species in this group display transitions from the ancestral condition reconstructed for the Anthonotha clade. The main transitions were towards a reduction in the number of organs (petals, stamens and staminodes). Despite the high number of transitions, our analyses indicate that the seven characters are evolving independently in these lineages. Petal morphology is the most labile floral trait with a total of seven independent transitions in number and seven independent transitions to modification in petal types. The diverse petal morphology along the dorsoventral axis of symmetry within the flower is not associated with differences at the micromorphology of petal surface, suggesting that in this group all petals within the flower might possess the same petal identity at the molecular level. Our results provide a solid evolutionary framework for further detailed analyses of the molecular basis of petal identity.

To document

Abstract

Improving nitrogen (N) management of small-scale farming systems in developing countries is crucially important for food security and sustainable development of world agriculture, but it is also very challenging. The N Nutrition Index (NNI) is a reliable indicator for crop N status, and there is an urgent need to develop an effective method to non-destructively estimate crop NNI in different smallholder farmer fields to guide in-season N management. The eBee fixed-wing unmanned aerial vehicle (UAV)-based remote sensing system, a ready-to-deploy aircraft with a Parrot Sequoia+ multispectral camera onboard, has been used for applications in precision agriculture. The objectives of this study were to (i) determine the potential of using fixed-wing UAV-based multispectral remote sensing for non-destructive estimation of winter wheat NNI in different smallholder farmer fields across the study village in the North China Plain (NCP) and (ii) develop a practical strategy for village-scale winter wheat N status diagnosis in small scale farming systems. Four plot experiments were conducted within farmer fields in 2016 and 2017 in a village of Laoling County, Shandong Province in the NCP for evaluation of a published critical N dilution curve and for serving as reference plots. UAV remote sensing images were collected from all the fields across the village in 2017 and 2018. About 150 plant samples were collected from farmer fields and plot experiments each year for ground truthing. Two indirect and two direct approaches were evaluated for estimating NNI using vegetation indices (VIs). To facilitate practical applications, the performance of three commonly used normalized difference VIs were compared with the top performing VIs selected from 59 tested indices. The most practical and stable method was using VIs to calculate N sufficiency index (NSI) and then to estimate NNI non-destructively (R2 = 0.53–0.56). Using NSI thresholds to diagnose N status directly was quite stable, with a 57–59% diagnostic accuracy rate. This strategy is practical and least affected by the choice of VIs across fields, varieties, and years. This study demonstrates that fixed-wing UAV–based remote sensing is a promising technology for in-season diagnosis of winter wheat N status in smallholder farmer fields at village scale. The considerable variability in local soil conditions and crop management practices influenced the overall accuracy of N diagnosis, so more studies are needed to further validate and optimize the reported strategy and consecutively develop practical UAV remote sensing–based in-season N recommendation methods.

To document

Abstract

The prospects and challenges for non-native tree species (NNTS) in Southeast Europe (SEE) were analyzed using a combination of SWOT Analysis and the Analytic Hierarchy Process (AHP). Preference data from three groups of opinion leaders with extensive knowledge of the silviculture, ecology and impact of climate change on NNTS in SEE (researchers, practitioners and decision-makers) were used. Results revealed that strengths and opportunities for all three analyzed elements outweigh their weaknesses and threats. In the review of silviculture, key strengths and opportunities were identified as high p roductivity, adaptation to afforestation of degraded lands, gap filling in forest ecosystems after the loss of native tree species, and higher volume growth of NNTS compared to native tree species. Strength-Opportunity (SO) elements related to climate change were found to be adaptive management responsiveness to climate change and increased length of growing period, possibility of better-adapted mixtures with NNTS under climate change, and replacement of tree species that are sensitive to pests and outbreaks resulting from climate change. These results provide important insights into different segments of strategy approach of sustainable management of NNTS in relation to management, silviculture and climate change practices in SEE.

To document

Abstract

Biofortification of forage crops has an important role in improving the quality of plants used for animal nutrition. The field experiments were conducted in three consecutive years in Subotica, Serbia, in order to investigate the effect of Se, Zn, and Cu foliar fertilization on the yield, Se and Zn contents and nutrient efficiency, as well as on other mineral compositions of alfalfa hay. The treatments were as follows: i) control without fertilization, ii) 5 g Se ha-1, iii) 10 g Se ha-1, iv) 0.5 kg Zn ha-1, v) 1 kg Zn ha-1, vi) the combination of these two elements (0.5 kg Zn ha-1 and Se 10 g ha-1) and vii) 2% Cu solution. The application of Se, Zn, and Cu had no effect on dry yield or on crude protein, P, K, Ca, Mg, Fe, Mn, Mo, and Co contents in alfalfa hay. However, Se, Zn, and Cu fertilization significantly increased the contents of Se, Zn, and Cu in alfalfa hay. The results showed that Se and Zn contents in plant biomass were significantly correlated with the applied doses of Se (r=0.99) and Zn (r=0.99). The production years of alfalfa and the weather conditions proved to be significant factors in fertilization efficiency.