Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Christophe Moni Hanna Marika Silvennoinen Bruce A. Kimball Erling Fjelldal Marius Brenden Ingunn Burud Andreas Svarstad Flø Daniel RasseAbstract
Background: Global warming is going to affect both agricultural production and carbon storage in soil worldwide. Given the complexity of the soil-plant-atmosphere continuum, in situ experiments of climate warming are necessary to predict responses of plants and emissions of greenhouse gases (GHG) from soils. Arrays of infrared (IR) heaters have been successfully applied in temperate and tropical agro-ecosystems to produce uniform and large increases in canopy surface temperature across research plots. Because this method had not yet been tested in the Arctic where consequences of global warming on GHG emission are expected to be largest, the objective of this work was to test hexagonal arrays of IR heaters to simulate a homogenous 3 °C warming of the surface, i.e. canopy and visible bare soil, of five 10.5-m2 plots in an Arctic meadow of northern Norway. Results: Our results show that the IR warming setup was able to simulate quite accurately the target + 3 °C, thereby enabling us to simulate the extension of the growing season. Meadow yield increased under warming but only through the lengthening of the growing season. Our research also suggests that, when investigating agricultural systems on the Arctic, it is important to start the warming after the vegetation is established,. Indeed, differential emergence of meadow plants impaired the homogeneity of the warming with patches of bare soil being up to 9.5 °C warmer than patches of vegetation. This created a pattern of soil crusting, which further induced spatial heterogeneity of the vegetation. However, in the Arctic these conditions are rather rare as the soil exposed by snow melt is often covered by a layer of senescent vegetation which shelters the soil from direct radiation. Conclusions: Consistent continuous warming can be obtained on average with IR systems in an Arctic meadow, but homogenous spatial distribution requires that the warming must start after canopy closure.
Authors
Tao Zhao Suresh Ganji Christian Schiebe Björn Bohman Philip Weinstein Paal Krokene Anna-Karin Borg-Karlson C. Rikard UneliusAbstract
Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar with 13C D-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin. The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles. The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest control in conifer forests and plantations.
Abstract
No abstract has been registered
Authors
Jari Vauhkonen Ambros Berger Thomas Gschwantner Klemens Schadauer Philippe Lejeune Jérôme Perin Mikhail Pitchugin Radim Adolt Miroslav Zeman Vivian Kvist Johannsen Sebastian Kepfer-Rojas Allan Sims Claire Bastick François Morneau Antoine Colin Susann Bender Pál Kovácsevics György Solti László Kolozs Dóra Nagy Kinga Nagy Mark Twomey John Redmond Patrizia Gasparini M. Notarangelo Maria Rizzo Kristaps Makovskis Andis Lazdins Ainars Lupikis Gintaras Kulbokas Clara Antón Fernández Francisco Castro Rego Leónia Nunes Gheorghe Marin Catalin Calota Damjan Pantić Dragan Borota Joerg Roessiger Michal Bosela Vladimír Šebeň Mitja Skudnik Patricia Adame Iciar Alberdi Isabel Cañellas Torgny Lind Renats Trubins Esther Thürig Golo Stadelmann Ben Ditchburn David Ross Justin Gilbert Lesley Halsall Markus Lier Tuula PackalenAbstract
No abstract has been registered
Authors
Olalla Díaz-Yáñez Blas Mola-Yudego José Ramón González-OlabarriaAbstract
No abstract has been registered
Authors
Carl Gunnar FossdalAbstract
Plant biology in Norway. Some main aspects; 1. Major efforts on micro and macro algae are now ongoing in Norway (lots of funding goes this way) 2. The pure basic plant biology research with molecular aspects are mostly at the major universities (exemplified here by Prof. Grini and Haman and in smaller groups at other institutions (exemplified by the TOPPFORSK project in epigenetics at NIBIO). 3. A lot of the plant biology in Norway is related to evolution, biodiversity and ecology in general, including climate change (Exemplified by studies in clinal variation and phenology) 4. There is a lot of applied research related to feed and food crops as well as forestry (including invasive species. abiotic stress, plant pathogen interactions insects and fungi with importance for agriculture). 5. There is a National Network for Plant Biology Research in Norway (led by Paul Grini from UiO). This network holds annual/biannual Norwegian Plant Biology conference (NorPlantBio) conferences. 6. Examples from the various institutions in Norway will now be presented.
Authors
Mekjell MelandAbstract
No abstract has been registered
Authors
Daniel RasseAbstract
No abstract has been registered