Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
No abstract has been registered
Authors
B. S. Steidinger T. W. Crowther J. Liang M. E. Van Nuland G. D. A. Werner P. B. Reich G. J. Nabuurs S. de-Miguel M. Zhou N. Picard B. Herault X. Zhao C. Zhang D. Routh Meinrad Abegg C. Yves Adou Yao Giorgio Alberti Angelica Almeyda Zambrano Esteban Alvarez-Davila Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernández Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo Aymard Timothy Baker Radomir Bałazy Olaf Bánki Jorcely Barroso Meredith Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Francis Q. Brearley Roel Brienen Eben Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo Cesar Goran Cesljar Robin Chazdon Han Y. H. Chen Douglas Sheil K. G. PeayAbstract
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
Abstract
No abstract has been registered
Authors
Oda Marie Kjørlaug Svennevik Greeley Beck Ester Rus Bjørge Westereng Matthew Higgins Odd Egil Solheim Pål Jahre Nilsen Svein Jarle HornAbstract
Efficient digestate dewatering is crucial to reduce the volume and transportation cost of solid residues from anaerobic digestion (AD) plants. Large variations in dewatered cake solids have been reported and predictive models are therefore important in design and operation of such plants. However, current predictive models lack validation across several digestion substrates, pre-treatments and full-scale plants. In this study, we showed that thermogravimetric analysis is a reliable prediction model for dewatered cake solids using digestates from 15 commercial full-scale plants. The tested digestates originated from different substrates, with and without the pre-AD thermal hydrolysis process (THP). Moreover, a novel combined physicochemical parameter (C/N•ash) characterizing different digestate blends was identified by multiplying the C/N ratio with ash content of the dried solids. Using samples from 22 full-scale wastewater, food waste and co-waste plants, a linear relationship was found between C/N•ash and predicted cake solids for digestates with and without pre-AD THP. Pre-AD THP improved predicted cake solids by increasing the amount of free water. However, solids characteristics like C/N ratio and ash content had a more profound influence on the predicted cake solids than pre-AD THP and type of dewatering device. Finally, C/N•ash was shown to have a linear relationship to cake solids and reported polymer dose from eight full-scale pre-AD THP plants. In conclusion, we identified the novel parameter C/N•ash which can be used to predict dewatered cake solids regardless of dewatering device and sludge origin.
Abstract
Multi-temporal Sentinel 2 optical images and 3D photogrammetric point clouds can be combined to enhance the accuracy of timber volume models on large spatial scale. Information on the proportion of broadleaf and conifer trees improves timber volume models obtained from 3D photogrammetric point clouds. However, the broadleaf-conifer information cannot be obtained from photogrammetric point clouds alone. Furthermore, spectral information of aerial images is too inconsistent to be used for automatic broadleaf-conifer classification over larger areas. In this study we combined multi-temporal Sentinel 2 optical satellite images, 3D photogrammetric point clouds from digital aerial stereo photographs, and forest inventory plots representing an area of 35,751 km2 in south-west Germany for (1) modelling the percentage of broadleaf tree volume (BL%) using Sentinel 2 time series and (2) modelling timber volume per hectare using 3D photogrammetric point clouds. Forest inventory plots were surveyed in the same years and regions as stereo photographs were acquired (2013–2017), resulting in 11,554 plots. Sentinel 2 images from 2016 and 2017 were corrected for topographic and atmospheric influences and combined with the same forest inventory plots. Spectral variables from corrected multi-temporal Sentinel 2 images were calculated, and Support VectorMachine (SVM) regressions were fitted for each Sentinel 2 scene estimating the BL% for corresponding inventory plots. Variables from the photogrammetric point clouds were calculated for each inventory plot and a non-linear regression model predicting timber volume per hectare was fitted. Each SVMregression and the timber volume model were evaluated using ten-fold cross-validation (CV). The SVMregression models estimating the BL% per Sentinel 2 scene achieved overall accuracies of 68%–75% and a Root Mean Squared Error (RMSE) of 21.5–26.1. The timber volumemodel showed a RMSE% of 31.7%, amean bias of 0.2%, and a pseudo-R2 of 0.64. Application of the SVMregressions on Sentinel 2 scenes covering the state of Baden-Württemberg resulted in predictions of broadleaf tree percentages for the entire state. These predicted values were used as additional predictor in the timber volume model, allowing for predictions of timber volume for the same area. Spatially high-resolution information about growing stock is of great practical relevance for forest management planning, especially when the timber volume of a smaller unit is of interest, for example of a forest stand or a forest districtwhere not enough terrestrial inventory plots are available to make reliable estimations. Here, predictions from remote-sensing based models can be used. Furthermore, information about broadleaf and conifer trees improves timber volume models and reduces model errors and, thereby, prediction uncertainties.
Abstract
Surface albedo is an important physical attribute of the climate system and satellite retrievals are useful for understanding how it varies in time and space. Surface albedo is sensitive to land cover and structure, which can vary considerably within the area comprising the effective spatial resolution of the satellite-based retrieval. This is particularly true for MODIS products and for topographically complex regions, such as Norway, which makes it difficult to separate the environmental drivers (e.g., temperature and snow) from those related to land cover and vegetation structure. In the present study, we employ high resolution datasets of Norwegian land cover and structure to spectrally unmix MODIS surface albedo retrievals (MCD43A3 v6) to study how surface albedo varies with land cover and structure. Such insights are useful for constraining land cover-dependent albedo parameterizations in models employed for regional climate or hydrological research and for developing new empirical models. At the scale of individual land cover types, we found that the monthly surface albedo can be predicted at a high accuracy when given additional information about forest structure, snow cover, and near surface air temperature. Such predictions can provide useful empirical benchmarks for climate model predictions made at the land cover level, which is critical for instilling greater confidence in the albedo-related climate impacts of anthropogenic land use/land cover change (LULCC).
Authors
Mohamed Neji Anais Gorel Dario Isidro Ojeda Alayon Jerome Duminil Chedly Kastally Kathy Steppe Adeline Fayolle Olivier J. HardyAbstract
With the ongoing climate change, African rainforests are expected to experience severe drought events in the future. In Africa, the tropical genus Erythrophleum (Fabaceae) includes two forest sister timber tree species displaying contrasting geographical distributions. Erythrophleum ivorense is adapted to wet evergreen Guineo-Congolian forests, whereas E. suaveolens occurs in a wider range of climates, being found in moist dense forests but also in gallery forests under a relatively drier climate. This geographical distribution pattern suggests that the two species might cope differently to drought at the genomic level. Yet, the genetic basis of tolerance response to drought stress in both species is still uncharacterized. To bridge this gap, we performed an RNA-seq approach on seedlings from each species to monitor their transcriptional responses at different levels of drought stress (0, 2 and 6 weeks after stopping watering seedlings). Monitoring of wilting symptoms revealed that E. suaveolens displayed an earlier phenotypic response to drought stress than E. ivorense. At the transcriptomic level, results revealed 2020 (1204 down-regulated/816 up-regulated) and 1495 differentially expressed genes (DEGs) in response to drought stress from a total of 67,432 and 66,605 contigs assembled in E. ivorense and E. suaveolens, respectively. After identifying 30,374 orthologs between species, we found that only 7 of them were DEGs shared between species, while 587 and 458 were differentially expressed only in E. ivorense or E. suaveolens, respectively. GO and KEGG enrichment analysis revealed that the two species differ in terms of significantly regulated pathways as well as the number and expression profile of DEGs (Up/Down) associated with each pathway in the two stress stages. Our results suggested that the two studied species react differently to drought. E. suaveolens seems displaying a prompt response to drought at its early stage strengthened by the down-regulation of many DEGs encoding for signaling and metabolism-related pathways. A considerable up-regulation of these pathways was also found in E. ivorense at the late stage of drought, suggesting this species may be a late responder. Overall, our data may serve as basis for further understanding the genetic control of drought tolerance in tropical trees and favor the selection of crucial genes for genetically enhancing drought resistance.
Abstract
The genus Scapania comprises a group of leafy liverworts distributed throughout many bryophytic assemblages. While many Scapania species grow widely, some are assessed as endangered and appear to be specialists with distinct niche environments. Several are found only in alpine forest communities, inhabiting decaying logs in streams, typical of an environment that is threatened by both logging activity and changes to watercourses. Another species, S. nimbosa, has an unusual Oceanic-Montane distribution across Ireland, Scotland, Norway, China and Nepal. Since gemmae and sexual reproduction are absent the species is hypothesized to be primarily dispersed by fragmentation. In Norway S. nimbosa occupies an area of only 13 x 20 km, at altitudes between 300-980 m, and is frequently found with another more abundant asexual species, S. ornithopodioides. This makes S. nimbosa susceptible to local extinction through climate change or perhaps interspecific competition. Genomics is being increasingly used to infer demography and the evolutionary history of a species. Ascertaining levels of genetic variation can also contribute towards an effective conservation management plan. Besides, very little is known about the genomic organization and sexual determination in leafy liverworts. To generate new knowledge about the genus Scapania we sequenced the genomes of the sexual species S. nemorea (both male and female isolates), S. undulata (a single isolate), and several asexual S. ornithopodiodes and S. nimbosa isolates. Illumina paired-end (2x 300 bp) and Oxford Nanopore long reads were used to create genomic references. Initially organellar genomes were assembled, annotated and genetic variation was discovered. This revealed that variation is indeed present even for S. nimbosa and S. ornithopodioides at Norwegian sites. Next we focussed on creating a high quality nuclear reference genome for S. nemorea using the SPAdes assembler (v3.13). Qualities of each assembly and isolate were assessed with QUAST and BUSCO. While one assembly spans 202.6 Mb (10930 scaffolds; N50 of 66 Kb), other isolates of S. nemorea show larger assembled genome sizes and different Kmer distributions, consistent with the expected alternative sexual chromosome complement. We further analyse genomic synteny and diversity, but emphasize that difficulties in extracting DNA from herbarium specimens really hamper analysis.
Authors
Dajana Blagojevic YeonKyeong Lee Dag Anders Brede Ole Christian Lind Igor A. Yakovlev Knut Asbjørn Solhaug Carl Gunnar Fossdal Brit Salbu Jorunn Elisabeth OlsenAbstract
Main conclusion Persistent DNA damage in gamma-exposed Norway spruce, Scots pine and Arabidopsis thaliana, but persistent adverse effects at the organismal and cellular level in the conifers only. Gamma radiation emitted from natural and anthropogenic sources may have strong negative impact on plants, especially at high dose rates. Although previous studies implied different sensitivity among species, information from comparative studies under standardized conditions is scarce. In this study, sensitivity to gamma radiation was compared in young seedlings of the conifers Scots pine and Norway spruce and the herbaceous Arabidopsis thaliana by exposure to 60Co gamma dose rates of 1–540 mGy h−1 for 144 h, as well as 360 h for A. thaliana. Consistent with slightly less prominent shoot apical meristem, in the conifers growth was significantly inhibited with increasing dose rate ≥ 40 mGy h−1. Post-irradiation, the conifers showed dose-rate-dependent inhibition of needle and root development consistent with increasingly disorganized apical meristems with increasing dose rate, visible damage and mortality after exposure to ≥ 40 mGy h−1. Regardless of gamma duration, A. thaliana showed no visible or histological damage or mortality, only delayed lateral root development after ≥ 100 mGy h−1 and slightly, but transiently delayed post-irradiation reproductive development after ≥ 400 mGy h−1. In all species dose-rate-dependent DNA damage occurred following ≥ 1–10 mGy h−1 and was still at a similar level at day 44 post-irradiation. In conclusion, the persistent DNA damage (possible genomic instability) following gamma exposure in all species may suggest that DNA repair is not necessarily mobilized more extensively in A. thaliana than in Norway spruce and Scots pine, and the far higher sensitivity at the organismal and cellular level in the conifers indicates lower tolerance to DNA damage than in A. thaliana.
Authors
Dilli Prasad Rijal Kelsey Lorberau Peter D. Heintzman Youri Lammers Jutta Kapfer Einar Støvern Nigel Gilles Yoccoz Dorothee Ehrich Antony Brown Inger Greve Alsos Kari Anne BråthenAbstract
No abstract has been registered