Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

Abstract

This study aims to identify some of the critically important factors in the sustainability of microbreweries in peripheral northern areas, focusing on the entrepreneurs’ understanding of sustainability. Theoretically, this study adopts the perspective of service-dominant logic on value. Methodologically, it uses an action-research approach and conducts in-depth interviews with four entrepreneurs. The findings suggest that the entrepreneurs reflect on several relevant issues in line with sustainability thinking. The perception of sustainability, especially environmental sustainability, is one subject that the entrepreneurs perceive and sometimes in conflict with the economic sustainability of their businesses. Constraints recognized include the lack of strategic planning and explicit discussions about sustainability with potential stakeholders. A critically important factor for the sustainability of microbreweries is the need for entrepreneurs to engage in wider discussions about the conceptual and practical aspects of sustainability, especially with government and community bodies.

To document

Abstract

Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.

To document

Abstract

A major cost component in livestock production is feed, which suggests improved feed efficiency as a promising strategy to improve both competitiveness and environmental sustainability. This study has investigated the technical and economic efficiency of using two alternatives to the standard feeds in livestock production in Norway. Data was generated from two controlled feeding experiments involving dairy cows and finishing pigs. In the dairy cow experiment, grass silage optimal in protein content was compared to silage lower in protein content in rations to moderately yielding cows. In the pig experiment, imported soybean meal was compared to rapeseed meal in diets to finishing pigs. From Data Envelopment Analysis, we did not find significant within group as well as between group differences in technical efficiency of animals under different feeding strategies. Under the assumptions of the study, however, a feeding regime based on low protein silage was found to be cheaper (–9% to –10%) for moderately yielding dairy cows, suggesting that Norwegian milk production could be based on the low protein silage fed ad libitum. On the other hand, despite reducing feed costs, a feeding regime based on rapeseed meal was less profitable, although statistically insignificant, than soybean meal for finishing pig production. Therefore, the nutritional value must improve and/or the price of rapeseed meal drop before it becomes an economically acceptable replacement to soybean meal.

Abstract

Phosphorus is an essential plant nutrient, but primary resources are limited and overfertilization may cause eutrophication of freshwater. Our objectives were to examine temperature effects on (a) optimal P rate for turfgrass establishment, and (b) increasing rates of foliar vs. granular P for early spring growth of established greens. Two trials, both on USGA root zones and replicated in April−May over 2 yr, were conducted in daylight phytotrons at 7, 12 and 17 °C. Experiment 1 compared 5 P rates from 0 to 0.48 g P m−2 wk−1 for creeping bentgrass establishment on a sand containing 13 mg P kg−1 (Mehlich‐3). Results showed no temperature effect on the optimal P rate. Bentgrass coverage and clipping yield increased up to 0.12 and 0.24 g P m−2 wk−1, corresponding to 6 and 12% of the N input, respectively. The concentration of P in clippings was higher at 7 than at 17 °C indicating that temperature was more limiting to shoot growth than to P uptake. A higher root/top ratio showed that plants invested more in roots under P deficiency. Experiment 2 was conducted using intact cores from a 4‐yr‐old creeping bentgrass (Agrostis stolonifera L.) green with a Mehlich‐3 P level of 34 mg P kg−1. Results showed increased clipping yields up to 0.18 g P m−2 wk−1 and higher P uptake with granular than with foliar application, but there was no effect on turfgrass color and no interaction with temperature. Low temperatures did not justify higher P applications.

To document

Abstract

Standard succulent vegetation mixes developed mostly in temperate climates are being increasingly used on green roofs in different climate zones with uncertain outcome regarding vegetation survival and cover. We investigated vegetation on green roofs at nine temperate, cold, and/or wet locations in Norway and Sweden covering wide ranges of latitude, mean annual temperature, annual precipitation, frequencies of freeze-thaw cycles, and longest annual dry period. The vegetation on the roofs were surveyed in two consecutive years, and weather data were compiled from meteorological databases. At all sites we detected a significant decline in species compared to originally intended (planted/sown) species. Both the survival rate and cover of the intended vegetation were positively related to the mean annual temperature. Contrary to a hypothesis, we found that intended vegetation cover was negatively rather than positively related to mean annual precipitation. Conversely, the unintended (spontaneous) vegetation was favoured by high mean annual precipitation and low mean annual temperature, possibly by enabling it to colonize bare patches and outcompete the intended vegetation. When there is high mortality and variation in cover of the intended vegetation, predicting the strength of ecosystem services the vegetation provides on green roofs is difficult. The results highlight the needs for further investigation on species traits and the local factors driving extinction and colonizations in order to improve survivability and ensure a dense vegetation throughout the successional stages of a green roof.