Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Abstract
Distribution modeling methods are used to provide occurrence probability surfaces for modeled targets. While most often used for modeling species, distribution modeling methods can also be applied to vegetation types. However, surfaces provided by distribution modeling need to be transformed into classified wall-to-wall maps of vegetation types to be useful for practical purposes, such as nature management and environmental planning. The paper compares the performance of three methods for assembling predictions for multiple vegetation types, modeled individually, into a wall-to-wall map. The authors used grid-cell based probability surfaces from distribution models of 31 vegetation types to test the three assembly methods. The first, a probability-based method, selected for each grid cell the vegetation type with the highest predicted probability of occurrence in that cell. The second, a performance-based method, assigned the vegetation types, ordered from high to low model performance, to a fraction of the grid cells given by the vegetation type’s prevalence in the study area. The third, a prevalence-based method, differed from the performance-based method by assigning vegetation types in the order from low to high prevalence. Thus the assembly methods worked in two principally different ways: the probability-based method assigned vegetation types to grid cells in a cell-by-cell manner, and both the performance-based method and prevalence-based method assigned them in a type-by-type manner. All methods were evaluated by use of reference data collected in the field, more or less independently of the data used to parameterize the vegetation-type models. Quantity, allocation, and total disagreement, as well as proportional dissimilarity metrics, were used for evaluation of assembly methods. Overlay analysis showed 38.1% agreement between all three assembly methods. The probability-based method had the lowest total disagreement with, and proportional dissimilarity from, the reference datasets, but the differences between the three methods were small. The three assembly methods differed strongly with respect to the distribution of the total disagreement on its quantity and allocation components: the cell-by-cell assignment method strongly favored allocation disagreement and the type-by-type methods strongly favored quantity disagreement. The probability-based method best reproduced the general pattern of variation across the study area, but at the cost of many rare vegetation types, which were left out of the assembled map. By contrast, the prevalence-based and performance-based methods represented vegetation types in accordance with nationwide area statistics. The results show that maps of vegetation types with wall-to-wall coverage can be assembled from individual distribution models with a quality acceptable for indicative purposes, but all the three tested methods currently also have shortcomings. The results also indicate specific points in the methodology for map assembly that may be improved. area frame survey, assembly strategies, distribution modeling, spatial probabilities, vegetation mapping, vegetation types
Abstract
No abstract has been registered
Authors
Markus A. K. Sydenham Zander Venter Trond Reitan Claus Rasmussen Astrid Brekke Skrindo Daniel Ingvar Jeuderan Skoog Kaj-Andreas Hanevik Stein Joar Hegland Yoko L. Dupont Anders Nielsen Joseph Chipperfield Graciela RuschAbstract
No abstract has been registered
Authors
Tamaryn A. Asbury Rhett Bennett Aidan Price Charlene da Silva Markus Bürgener Juliana D. Klein Simo Maduna N. Sidat S. Fernando Aletta E. Bester-van der MerweAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Abdelhameed Elameen Svein Stueland Ralf Kristensen Rosa Ferreira Fristad Trude Vrålstad Ida SkaarAbstract
No abstract has been registered
Authors
Sigitas Girdziušas Magnus Löf Kjersti Holt Hanssen Dagnija Lazdiņa Palle Madsen Timo Saksa Kaspars Liepiņš Inger Sundheim Fløistad Marek MetslaidAbstract
Since the beginning of the twentieth century, forest regeneration management and policy in the Nordic–Baltic region (Denmark, Sweden, Norway, Finland, Estonia, Latvia and Lithuania) have gone through significant changes. For decades forest as a key natural resource was managed with main focus on timber production. However, several factors influenced shifting forest management, including forest regeneration to meet a wide range of society needs. This review study aims to reveal the historical development of forest regeneration identifying knowledge gaps and supporting decisions that promote sustainable regeneration of future forests. The development of forest regeneration management and policy in the Nordic–Baltic countries is analyzed through reforestation and afforestation practices as well as legislation aspects using a narrative review approach. Trends in forest regeneration practices within the region are identified and explored over a timeframe spanning from 1900 until today. Despite diverse forestry management structures and differing political, social situations, the study shows that forest regeneration development has followed similar patterns over time in all Nordic–Baltic region countries: extensive forestry, clear-cut forestry, retention forestry and currently evolving climate-adaptive forestry. Nevertheless, regional differences among the Nordic–Baltic countries, especially in forest regeneration-related legislation, were identified due to a mixture of international and local driving forces.
Authors
Yuying Jing Martin Krauss Simon Zschieschang Anja Miltner Andrii Butkovskyi Trine Eggen Matthias Kästner Karolina M. NowakAbstract
Surface water runoff can export pesticides from agricultural fields into adjacent aquatic ecosystems, where they may pose adverse effects to organisms. Constructed wetlands (CWs) are widely used to treat agricultural runoff contaminated by pesticides, but the removal of hydrophilic pesticides is usually low. In this study, we suggest superabsorbent polymer (SAP), a cross-linked hydrophilic polymer, as a supplement to substrates of CWs and tested the hypothesis that SAP results in an enhanced removal of hydrophilic pesticides. Therefore, batch experiments were conducted to study the retention capacity of water-saturated SAP (w-SAP) for several hydrophilic pesticides. Retention of the pesticides on w-SAP was related to the ionization state and water solubility of the pesticides. The retention of neutral pesticides, imidacloprid, metalaxyl and propiconazole, was about 20% higher than that measured for anionic pesticides, bentazone, glyphosate and MCPA. The retention of the pesticides by w-SAP mainly resulted from their distribution in the gel-water phase of w-SAP, while less water soluble pesticides might have also been adsorbed on the molecular backbone of SAP. Furthermore, we tested the efficacy of w-SAP for treatment of runoff water contaminated by pesticides in lab-scale horizontal subsurface flow CWs. SAP in CWs improved the removal of the pesticides, including the recalcitrant ones. The removal enhancement was owing to the increase of hydraulic retention time and improvement of biodegradation. The removal of the pesticides in SAP containing CWs was > 93% for MCPA, glyphosate, and propiconazole, 62 – 99% for imidacloprid, 50 – 84% for metalaxyl, and 38 – 73% for bentazone. In the control gravel CWs, the removal was > 98% for glyphosate, generally > 83% for MCPA and propiconazole, 46 – 98% for imidacloprid, 32 – 97% for metalaxyl, and 9 – 96% for bentazone.