Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Urban agriculture is increasingly recognized as an important sustainable pathway for climate change adaptation and mitigation, for building more resilient cities, and for citizens’ health. Urban agriculture systems appear in many forms – both commercial and non-commercial. The value of the services derived from urban agriculture, e.g. enhanced food security, air quality, water regulation, and high level of biodiversity, is often difficult to quantify to inform policymakers and the general public in their decision making. We perform a contingent valuation survey regarding four different types of urban agriculture in Oslo. The citizens of Oslo are asked about their attitudes and willingness to pay for non-commercial and commercial urban agriculture. The non-commercial agriculture consists of urban community gardens for the citizens and urban gardens for work training, education and kindergartens. On the other hand, the commercial urban agriculture consists of aquaponics and vertical production. Results show that the citizens of Oslo are willing to increase their tax payments to contribute to further development of urban farming in Oslo. Keywords: Willingness to pay; community garden; aquaponics; vertical farming; Oslo

To document

Abstract

Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.

2020