Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2025

To document

Abstract

Land-use changes threaten ecosystems and are a major driver of species loss. Plants may adapt or migrate to resist global change, but this can lag behind rapid anthropogenic changes to the environment. Our data show that natural modulations of the microbiome of grassland plants in response to experimental land-use change in a common garden directly affect plant phenotype and performance, thus increasing plant tolerance. In contrast, direct effects of fertilizer application and mowing on plant phenotypes were less strong. Land-use intensity-specific microbiomes caused clearly distinguishable plant phenotypes also in a laboratory experiment using gnotobiotic strawberry plants in absence of environmental variation. Therefore, natural modulations of the plant microbiome may be key to species persistence and ecosystem stability. We argue that a prerequisite for this microbiome-mediated tolerance is the availability of diverse local sources of microorganisms facilitating rapid modulations in response to change. Thus, conservation efforts must protect microbial diversity, which can help mitigate the effects of global change and facilitate environmental and human health.

To document

Abstract

This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications. • The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics. • Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models. • The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.