Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Authors
Vicente Guallart Michael Salka Daniel Ibañez Fabio Salbitano Silvano Fares Arne Sæbø Stefano Boeri Livia Shamir Lucrezia De Marco Sofia Paoli Maria Chiara Pastore Jerylee Wilkes-Allemann Evelyn Coleman Brantschen Ivana ŽivojinovićAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Silvano Fares Teodoro Georgiadis Arne Sæbø Ben Somers Koenraad Van Meerbeek Eva Beele Roberto Tognetti Giuseppe E. Scarascia-MugnozzaAbstract
No abstract has been registered
Authors
Monica Ubalde-Lopez Mark Nieuwenhuijsen Giuseppina Spano Giovanni Sanesi Carlo Calfapietra Alice Meyer-Grandbastien Liz O’Brien Giovanna Ottaviani Aalmo Fabio Salbitano Jerylee Wilkes-Allemann Payam DadvandAbstract
No abstract has been registered
Authors
Martin PetterssonAbstract
No abstract has been registered
Authors
Martin PetterssonAbstract
No abstract has been registered
Abstract
Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.
Authors
Melissa MagerøyAbstract
Epigenetic modification is an important mechanism that allows plants to rapidly adapt to changes in environment. This modification can provide long-term increased tolerance and resistance to abiotic and biotic stress and may even be transmittable to progeny. Knowledge on how epigenetic memory is established, maintained, triggered, and transmitted in plants with different evolutionary and life histories is important for understanding and utilizing epigenetic adaptation in plant protection. In this symposium, we welcome talks from those that provide insight into the molecular mechanism underlying epigenetic memory to those that present the practical aspects of implementing epigenetic adaptation in the field.
Abstract
No abstract has been registered
Abstract
No abstract has been registered