Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

Abstract

Abstract Germplasm characterization is an important component contributing to the effective management of plant genetic resources. The goal of this thesis was to study the genetic diversity of two models of vegetatively propagated plant species; roseroot (Rhodiola rosea L.) and sweet potato (Ipomoea batatas (L.) Lam), based on germplasm collections. Roseroot was recently collected from natural habitats and then vegetatively propagated at the germplasm centre while sweet potato already has a long tradition as a vegetatively propagated food species. I. Roseroot (Rhodiola rosea) Roseroot, R. rosea, also commonly known as golden root or arctic root, is a perennial herbaceous plant of the Crassulaceae family. R. rosea has its origin from the cold, humid regions of the northern hemisphere and grows mostly in the mountains near the snow border. R. rosea is widely distributed in Norway. As part of an effort to identify commercially valuable genotypes characterization of a germplasm collection from Norway was initiated. Amplified Fragment Length Polymorphism (AFLP) analysis was used to estimate genetic diversity within the Norwegian R. rosea germplasm collection. AFLP analysis of 97 R. rosea clones using five primer combinations gave a total of 109 polymorphic bands. A large molecular marker variation was found among roseroot clones in Norway with an average percentage of polymorphic bands (PPB) of 82.3%. Analysis of molecular variance (AMOVA) revealed a significantly greater variation within regions (92.03%) than among regions (7.97%) demonstrating that there was no close genetic similarity among clones originating from the same county. A low level of genetic differentiation (FST = 0.043) was observed, indicating a high level of gene flow, which had a strong influence on the genetic structure in Norway. Our results indicate high gene flow among R. rosea clones that might be a result of seed dispersal rather than cross-pollination. Ninety five clones of the Norwegian roseroot germplasm collection were analysed and quantified for their content of the bioactive compounds rosavin, salidroside, rosin, cinnamyl alcohol and tyrosol using High Performance Liquid Chromatography (HPLC) analysis. All bioactive compounds were detected in all clones but in highly variable quantities. The frequency distribution of the chemical content of each clone was not correlated with geographic region of origin or gender of the plant. Significant correlations between the content of these bioactive compounds were observed within individual roseroot clones. Low and nonsignificant correlations were found between AFLP markers used to study genetic diversity of the roseroot clones and their content of chemical compounds. The maximum content of rosavin, rosin and salidroside observed were substantially higher than previously reported for roseroot plants, and the roseroot clones characterized in this study might therefore be of high pharmacological value. The large quantitative and qualitative variation of the chemical compounds observed in this study and the large genetic diversity observed in this germplasm constitute a firm basis for improving traits such as chemical composition in a breeding program for roseroot. This is the first report that combines the analysis of genetic diversity with information of the chemical composition of roseroot. Further studies of the roseroot populations from Norway as well as from other countries should be performed throughout the following years to identify clones with optimal chemical compositions and to maintain high genetic diversity of this species. II. Sweet potato (Ipomoea batatas (L.) Lam) Sweet potato has its origin in South America and is the 7th most important crop in the world. A Tanzanian sweet potato germplasm collection was characterized using molecular markers and morphological traits. The AFLP method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection ..