Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop. Conservation of such genetic resources resides within the nation where they are found; therefore, national-level conservation recommendations are fundamental to global food security. We investigate the potential impact of climate change on CWR richness in Norway. The consequences of a 1.5 and 3.0 °C temperature rise were studied for the years 2030, 2050, 2070, 2080 and then compared to the present climate. The results indicate a pattern of shifting CWR richness from the south to the north, with increases in taxa turnover and in the numbers of threatened taxa. Recommendations for in situ and ex situ conservation actions over the short and long term for the priority CWRs in Norway are presented. The methods and recommendations developed here can be applied within other nations and at regional and global levels to improve the effectiveness of conservation actions and help ensure global food security.

To document

Abstract

Acetophenones are phenolic compounds involved in the resistance of white spruce (Picea glauca) against spruce budworm (Choristoneura fumiferiana), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding glycosides, pungenin and picein. These glycosides appear to be inactive against the insect but can be cleaved by a spruce b-glucosidase, PgbGLU-1, which releases the active aglycons. The reverse glycosylation reaction was hypothesized to involve a family 1 UDP-sugar dependent glycosyltransferase (UGT) to facilitate acetophenone accumulation in the plant. Metabolite and transcriptome profiling over a developmental time course of white spruce bud burst and shoot growth revealed two UGTs, PgUGT5 and PgUGT5b, that glycosylate pungenol. Recombinant PgUGT5b enzyme produced mostly pungenin, while PgUGT5 produced mostly isopungenin. Both UGTs also were active in vitro on select flavonoids. However, the context of transcript and metabolite accumulation did not support a biological role in flavonoid metabolism but correlated with the formation of pungenin in growing shoots. Transcript levels of PgUGT5b were higher than those of PgUGT5 in needles across different genotypes of white spruce. These results support a role of PgUGT5b in the biosynthesis of the glycosylated acetophenone pungenin in white spruce.

To document

Abstract

Plants are sessile organisms that lack a specialized immune system to cope with biotic and abiotic stress. Instead, plants have complex regulatory networks that determine the appropriate distribution of resources between the developmental and the defense programs. In the last years, epigenetic regulation of repeats and gene expression has evolved as an important player in the transcriptional regulation of stress‐related genes. Here, we review the current knowledge about how different stresses interact with different levels of epigenetic control of the genome. Moreover, we analyze the different examples of transgenerational epigenetic inheritance and connect them with the known features of genome epigenetic regulation. Although yet to be explored, the interplay between epigenetics and stress resistance seems to be a relevant and dynamic player of the interaction of plants with their environments.

To document

Abstract

Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)-β-caryophyllene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)-β-caryophyllene and (E)-β-farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host-finding behaviour of L. botrana in the field, creating avenues for new pest control methods.

Abstract

In nature plant terpenoids play multiple ecological roles. Many phytophagous insects use them as kairomones to locate their host plants. This is also the case for Lobesia botrana, which is the main pest of European vineyards. It was found that a specific blend of the terpenoids (E)-β-caryophyllene, (E)-β-farnesene and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene emitted by grapevine was attractive to L. botrana females, and the attractiveness was shown to be dependent on the kairomone ratio. In this work, we generated stable grapevine transgenic lines with altered (E)-β-caryophyllene and (E)-β-farnesene emission compared to natural plants. Thus, we modified the ratio between these two kairomones in vivo, and tested how it affected L. botrana behaviour.