Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Authors
Klaus Ringsborg Westphal Katrine Amalie Hamborg Nielsen Rasmus Dam Wollenberg Mathias Bonde Møllehøj Simone Bachleitner Lena Studt Erik Lysøe Henriette Giese Reinhard Wimmer Jens Laurids Sørensen Teis Esben SondergaardAbstract
Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.
Abstract
No abstract has been registered
Authors
Anja Karine Ruud Jon Arne Dieseth Andrea Ficke Eiko Furuki Huyen T. T. Phan Richard P. Oliver Kar-Chun Tan Morten LillemoAbstract
Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE–Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Marie Reimer Björn Ringselle Göran Bergkvist Sally Westaway Raphaël Wittwer Jörg Peter Baresel Marcel G. A. van der Heijden Kjell Mangerud Maria R. Finckh Lars Olav BrandsæterAbstract
Reducing soil tillage can lead to many benefits, but this practice often increases weed abundance and thus the need for herbicides, especially during the transition phase from inversion tillage to non-inversion tillage. We evaluated if subsidiary crops (SCs, e.g., cover crops) can mitigate the effects of non-inversion tillage on weed abundance. Two-year experiments studying SC use, tillage intensity, and nitrogen (N) fertilization level were carried out twice at six sites throughout northern and central Europe. SCs significantly reduced weed cover throughout the intercrop period (−55% to −1% depending on site), but only slightly during the main crops. Overall weed abundance and weed biomass were higher when using non-inversion tillage with SCs compared to inversion tillage without SCs. The effects differed due to site-specific weed pressure and management. With increasing weed pressure, the effect of SCs decreased, and the advantage of inversion over non-inversion tillage increased. N fertilization level did not affect weed abundance. The results suggest that SCs can contribute by controlling weeds but cannot fully compensate for reduced weed control of non-inversion tillage in the transition phase. Using non-inversion tillage together with SCs is primarily recommended in low weed pressure environments.
Authors
Juliana PerminowAbstract
No abstract has been registered
Authors
Marit AlmvikAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Therese With BergeAbstract
No abstract has been registered