Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Tree species change has been suggested as one of the government policies to mitigate climate change in Nor-way with the aim to increase the annual uptake of CO2 and the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. A shift in tree species is expected to affect the pools and fluxes of C in the stand as well as the microbial community. As part of the BalanC project, we assess C storage related to shift in tree species cover in western Norway and whether a corresponding shift in soil microbial communities are happening. The study aim at integrating results on soil respiration, C mineralization, soil stability, diversity of bacteria, fungi and micro-eukaryotes, soil nutrient pools, litter inputs and edaphic factors at the stand level in order to identify key drivers for changes in the soil C stocks. Fifteen paired plots of native birch and planted Norway spruce at five locations were sampled. Prelimi-nary results suggests a redistribution of C from the mineral soil to the forest floor in the spruce stands, with minor changes in the total soil C pools over the 45-60 years since the tree species change. The in situ soil respi-ration and heterothropic respiration, as well as C mineralization rates, were higher in birch than in spruce stands. Differences in C mineralization rates attenuate with depth between forest types. The microbial com-munities of the three organismal groups were all strongly structured along the vertical depth.

To document

Abstract

Interest in localized agri-food systems has grown significantly in recent years. They are associated with several benefits and are seen as important for rural development. An important share of the academic debate addresses the contribution of localized food systems to the current and/or future sustainability of agriculture. Sustainability is defined in several ways, but many scholars recognize that sustainability can only be achieved by a combination of socio-economic, cultural, and environmental aspects. However, the attributes and indicators used for sustainability analyses also differ. Biodiversity is, for instance, often not included in analyses of environmental sustainability even if biodiversity is of crucial importance for longer-term ecological sustainability. To contribute to the debate about the importance of localized food production for sustainability from the environmental point of view, specifically with regard to biodiversity, this is therefore discussed based on the results of several studies presented in this paper. The studies focus on Nordic low-intensity livestock systems related to species-rich semi-natural grasslands. All the studies show that low-intensive agriculture and use of semi-natural grasslands may play an important role in maintaining biodiversity on both small and large scales. They also show that milk and dairy products from free-ranging livestock in heterogeneous landscapes with semi-natural grasslands may have a unique quality associated with local grazing resources. Thus, producers can combine production of food of documented high nutritional and gastronomic value with maintenance of biodiversity, i.e., localized agri-food production based on low-intensive agriculture systems and semi-natural grasslands may be a win-win recipe for both farmers and the society.