Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The size and location of agricultural fields that are in active use and the type of use during the growing season are among the vital information that is needed for the careful planning and forecasting of agricultural production at national and regional scales. In areas where such data are not readily available, an independent seasonal monitoring method is needed. Remote sensing is a widely used tool to map land use types, although there are some limitations that can partly be circumvented by using, among others, multiple observations, careful feature selection and appropriate analysis methods. Here, we used Sentinel-2 satellite image time series (SITS) over the land area of Norway to map three agricultural land use classes: cereal crops, fodder crops (grass) and unused areas. The Multilayer Perceptron (MLP) and two variants of the Convolutional Neural Network (CNN), are implemented on SITS data of four different temporal resolutions. These enabled us to compare twelve model-dataset combinations to identify the model-dataset combination that results in the most accurate predictions. The CNN is implemented in the spectral and temporal dimensions instead of the conventional spatial dimension. Rather than using existing deep learning architectures, an autotuning procedure is implemented so that the model hyperparameters are empirically optimized during the training. The results obtained on held-out test data show that up to 94% overall accuracy and 90% Cohen’s Kappa can be obtained when the 2D CNN is applied on the SITS data with a temporal resolution of 7 days. This is closely followed by the 1D CNN on the same dataset. However, the latter performs better than the former in predicting data outside the training set. It is further observed that cereal is predicted with the highest accuracy, followed by grass. Predicting the unused areas has been found to be difficult as there is no distinct surface condition that is common for all unused areas.

Abstract

Traditional landscape photographs reaching back until the second half of the nineteenth century represent a valuable image source for the study of long-term landscape change. Due to the oblique perspective and the lack of geographical reference, landscape photographs are hardly used for quantitative research. In this study, oblique landscape photographs from the Norwegian landscape monitoring program are georeferenced using the WSL Monoplotting Tool with the aim of evaluating the accuracy of point and polygon features. In addition, the study shows how the resolution of the chosen digital terrain model and other factors affect accuracy. Points mapped on the landscape photograph had a mean displacement of 1.52 m from their location on a corresponding aerial photograph, while mapped areas deviated on average 5.6% in size. The resolution of the DTM, the placement of GCPs and the angle of incidence were identified as relevant factors to achieve accurate geospatial data. An example on forest expansion at the abandoned mountain farm Flysetra in Mid-Norway demonstrates how repeat photography facilitates the georectification process in the absence of reliable ground control points (GCPs) in very old photographs.

To document

Abstract

The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The ‘4 per 1000’ (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.

To document

Abstract

A major challenge in predicting species’ distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species’ regional distributions as simultaneously constrained by climatic conditions, while by necessity emerging from local biotic interactions. A ubiquitous pattern in nature illustrates this dichotomy: potentially competing species covary positively at large scales but negatively at local scales. Recent theory poses a resolution to this conundrum by predicting roles of both abiotic and biotic factors in covariation of species at both scales, but empirical tests have lagged such developments. We conducted a 15-y warming and herbivore-exclusion experiment to investigate drivers of opposing patterns of covariation between two codominant arctic shrub species at large and local scales. Climatic conditions and biotic exploitation mediated both positive covariation between these species at the landscape scale and negative covariation between them locally. Furthermore, covariation between the two species conferred resilience in ecosystem carbon uptake. This study thus lends empirical support to developing theoretical solutions to a long-standing ecological puzzle, while highlighting its relevance to understanding community compositional responses to climate change.

To document See dataset

Abstract

Distribution modeling methods are used to provide occurrence probability surfaces for modeled targets. While most often used for modeling species, distribution modeling methods can also be applied to vegetation types. However, surfaces provided by distribution modeling need to be transformed into classified wall-to-wall maps of vegetation types to be useful for practical purposes, such as nature management and environmental planning. The paper compares the performance of three methods for assembling predictions for multiple vegetation types, modeled individually, into a wall-to-wall map. The authors used grid-cell based probability surfaces from distribution models of 31 vegetation types to test the three assembly methods. The first, a probability-based method, selected for each grid cell the vegetation type with the highest predicted probability of occurrence in that cell. The second, a performance-based method, assigned the vegetation types, ordered from high to low model performance, to a fraction of the grid cells given by the vegetation type’s prevalence in the study area. The third, a prevalence-based method, differed from the performance-based method by assigning vegetation types in the order from low to high prevalence. Thus the assembly methods worked in two principally different ways: the probability-based method assigned vegetation types to grid cells in a cell-by-cell manner, and both the performance-based method and prevalence-based method assigned them in a type-by-type manner. All methods were evaluated by use of reference data collected in the field, more or less independently of the data used to parameterize the vegetation-type models. Quantity, allocation, and total disagreement, as well as proportional dissimilarity metrics, were used for evaluation of assembly methods. Overlay analysis showed 38.1% agreement between all three assembly methods. The probability-based method had the lowest total disagreement with, and proportional dissimilarity from, the reference datasets, but the differences between the three methods were small. The three assembly methods differed strongly with respect to the distribution of the total disagreement on its quantity and allocation components: the cell-by-cell assignment method strongly favored allocation disagreement and the type-by-type methods strongly favored quantity disagreement. The probability-based method best reproduced the general pattern of variation across the study area, but at the cost of many rare vegetation types, which were left out of the assembled map. By contrast, the prevalence-based and performance-based methods represented vegetation types in accordance with nationwide area statistics. The results show that maps of vegetation types with wall-to-wall coverage can be assembled from individual distribution models with a quality acceptable for indicative purposes, but all the three tested methods currently also have shortcomings. The results also indicate specific points in the methodology for map assembly that may be improved. area frame survey, assembly strategies, distribution modeling, spatial probabilities, vegetation mapping, vegetation types

To document

Abstract

Vegetation is an important component in global ecosystems, affecting the physical, hydrological and biogeochemical properties of the land surface. Accordingly, the way vegetation is parameterized strongly influences predictions of future climate by Earth system models. To capture future spatial and temporal changes in vegetation cover and its feedbacks to the climate system, dynamic global vegetation models (DGVMs) are included as important components of land surface models. Variation in the predicted vegetation cover from DGVMs therefore has large impacts on modelled radiative and non-radiative properties, especially over high-latitude regions. DGVMs are mostly evaluated by remotely sensed products and less often by other vegetation products or by in situ field observations. In this study, we evaluate the performance of three methods for spatial representation of present-day vegetation cover with respect to prediction of plant functional type (PFT) profiles – one based upon distribution models (DMs), one that uses a remote sensing (RS) dataset and a DGVM (CLM4.5BGCDV; Community Land Model 4.5 Bio-Geo-Chemical cycles and Dynamical Vegetation). While DGVMs predict PFT profiles based on physiological and ecological processes, a DM relies on statistical correlations between a set of predictors and the modelled target, and the RS dataset is based on classification of spectral reflectance patterns of satellite images. PFT profiles obtained from an independently collected field-based vegetation dataset from Norway were used for the evaluation. We found that RS-based PFT profiles matched the reference dataset best, closely followed by DM, whereas predictions from DGVMs often deviated strongly from the reference. DGVM predictions overestimated the area covered by boreal needleleaf evergreen trees and bare ground at the expense of boreal broadleaf deciduous trees and shrubs. Based on environmental predictors identified by DM as important, three new environmental variables (e.g. minimum temperature in May, snow water equivalent in October and precipitation seasonality) were selected as the threshold for the establishment of these high-latitude PFTs. We performed a series of sensitivity experiments to investigate if these thresholds improve the performance of the DGVM method. Based on our results, we suggest implementation of one of these novel PFT-specific thresholds (i.e. precipitation seasonality) in the DGVM method. The results highlight the potential of using PFT-specific thresholds obtained by DM in development of DGVMs in broader regions. Also, we emphasize the potential of establishing DMs as a reliable method for providing PFT distributions for evaluation of DGVMs alongside RS.