Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

It has been shown that the COVID-19 pandemic affected some agricultural systems more than others, and even within geographic regions, not all farms were affected to the same extent. To build resilience of agricultural systems to future shocks, it is key to understand which farms were affected and why. In this study, we examined farmers’ perceived robustness to COVID-19, a key resilience capacity. We conducted standardized farmer interviews (n = 257) in 15 case study areas across Europe, covering a large range of socio-ecological contexts and farm types. Interviews targeted perceived livelihood impacts of the COVID-19 pandemic on productivity, sales, price, labor availability, and supply chains in 2020, as well as farm(er) characteristics and farm management. Our study corroborates earlier evidence that most farms were not or only slightly affected by the first wave(s) of the pandemic in 2020, and that impacts varied widely by study region. However, a significant minority of farmers across Europe reported that the pandemic was “the worst crisis in a lifetime” (3%) or “the worst crisis in a decade” (7%). Statistical analysis showed that more specialized and intensive farms were more likely to have perceived negative impacts. From a societal perspective, this suggests that highly specialized, intensive farms face higher vulnerability to shocks that affect regional to global supply chains. Supporting farmers in the diversification of their production systems while decreasing dependence on service suppliers and supply chain actors may increase their robustness to future disruptions.

Abstract

The Copernicus high-resolution layer imperviousness density (HRL IMD) for 2018 is a 10 m resolution raster showing the degree of soil sealing across Europe. The imperviousness gradation (0–100%) per pixel is determined by semi-automated classification of remote sensing imagery and based on calibrated NDVI. The product was assessed using a within-pixel point sample of ground truth examined on very high-resolution orthophoto for the section of the product covering Norway. The results show a high overall accuracy, due to the large tracts of natural surfaces correctly portrayed as permeable (0% imperviousness). The total sealed area in Norway is underestimated by approximately 33% by HRL IMD. Point sampling within pixels was found to be suitable for verification of remote sensing products where the measurement is a binomial proportion (e.g., soil sealing or canopy coverage) when high-resolution aerial imagery is available as ground truth. The method is, however, vulnerable to inaccuracies due to geometrical inconsistency, sampling errors and mistaken interpretation of the ground truth. Systematic sampling inside each pixel is easy to work with and is known to produce more accurate estimates than a simple random sample when spatial autocorrelation is present, but this improvement goes unnoticed unless the status and location of each sample point inside the pixel is recorded and an appropriate method is applied to estimate the within-pixel sampling accuracy.

To document

Abstract

Background Spring hunting for ducks (Lodden in Northern Sami) is part of the Sami hunting and trapping culture. In Norway, this traditional hunting has been permitted in Kautokeino Municipality in accordance with the exception provision in the Wildlife Act Section 15, with quotas for males of several duck species. However, hunting in the spring may be in conflict with the Nature Diversity Act's principle for species management, saying (quote from Section 15): “Unnecessary harm and suffering caused to animals occurring in the wild and their nests, lairs and burrows shall be avoided. Likewise, unnecessary pursuing of wildlife shall be avoided.” Furthermore, in accordance with international legislation and agreements, the Wildlife Act (Section 9) states that the hunting season should not be set to the nesting and breeding season for the species in question. The Norwegian Environment Agency (NEA) asked VKM to (1) assess risk and risk-reducing measures on biodiversity and animal welfare when conducting spring hunting of ducks. The terms of reference were additionally clarified by the NEA to include assessments of the risks associated with hunting quotas of up to 150, 300, and 500 male individuals, on the populations of mallard (Anas platyrhynchos), tufted duck (Aythya fuligula), velvet scoter (Melanitta fusca), common scoter (Melanitta nigra), long-tailed duck (Clangula hyemalis), and red-breasted merganser (Mergus serrator). VKM was furthermore asked to (2) point out risk-reducing measures in scenarios with hunting bags corresponding to the mentioned quotas of all the six species. Method VKM appointed a project group to answer the request from NEA and assess the risks to biodiversity and animal welfare posed by spring hunting for adult male ducks. The project group narrowed down the scope of the biodiversity risk assessment to encompass risks for local populations of six target species: mallard, tufted duck, velvet scoter, common scoter, long-tailed duck, and red-breasted merganser, and non-target migratory waterbirds. Negative impacts on biodiversity was defined as negative effects on population viability. The VKM project group gathered data from publications retrieved from literature searches and reports from Kautokeino municipality to the Finnmark Estate (Finnmarkseiendommen), which were made available to the group by the Norwegian Environment Agency. Hunting statistics were acquired from Statistics Norway (Statistisk sentralbyrå; SSB). During the assessment, several critical knowledge gaps and uncertainties were identified. The main obstacle for assessment of the impact of spring hunting on viability of local populations in Kautokeino, is the lack of data on relevant population sizes and demographic rates for the six target species. The available population estimates are partly based on almost 30-year-old bird counts. In addition, knowledge about spatial and temporal distributions of each species, combined with local or remote-sensed data on ice breakup, is needed to estimate the proportion of the population being effectively hunted in early spring when ducks are congregating on available ice-free waters. Such knowledge, combined with information about where, when, how and by how many hunters the hunting is performed, is also critical for sound assessments of risk to biodiversity and harm to bird welfare. Improved data on hunting bags (reliable, spatially explicit, and detailed) and frequency of wounding and crippling is also needed to provide accurate assessments. The project group performed modelling of harvest scenarios for a range of conditions (e.g., number of birds harvested, reduced breeding success caused by indirect effects of disturbance, environmental stochasticity, and spatial variation in habitat) to assess how sensitive the populations are to different parameters and model assumptions. ..............................

To document

Abstract

Background Since the late 1800s, an unknown number of common pheasants and grey partridges from captive bred stocks have been released in Norwegian nature. The birds are released to be used for training of pointing dogs. The import, keeping and release of gamebirds, as well as the management of release sites, have been largely unregulated. The consequences to biodiversity, animal health and welfare have not been investigated. The Norwegian Environment Agency (NEA) and the Norwegian Food Safety Authority (NFSA) have jointly requested the Norwegian Scientific Committee for Food and Environment (VKM) for a scientific opinion on the release of common pheasants and grey partridges for pointing dog training regarding consequences for biodiversity, animal welfare of the released birds and health of the released birds as well as wild birds to which pathogens may be transmitted. VKM was further asked to suggest risk reducing measures for biodiversity and animal welfare. Methods VKM established a project group with expertise within avian ecology, landscape ecology, population biology, wildlife veterinary medicine and animal welfare. The group conducted systematic literature searches, scrutinized the resulting literature, and supplemented by other relevant articles and reports. In the absence of Norwegian studies, VKM used literature from other countries where common pheasants and grey partridges (and in some cases other gamebirds), are released, as references. The project group applied observation data of common pheasants and grey partridges in Norway for the period 2000-2022, presented by the Norwegian Biodiversity Information Centre (NBIC). In the assessments, VKM assumed that the release of birds will be in the same order of magnitude as in previous years (a few thousand birds annually on a national level). The number of release sites and the density of released birds per site are unknown. Increasing the number and density of birds would also increase the probability of negative effects and the severity of the consequences. VKM assessed the impacts of released common pheasants and grey partridges on competition, predation, hybridization, transmission of disease, herbivory and indirect impacts through interactions with other species (predator abundance and pathogen-mediated competition). VKM also assessed the impact on biodiversity in a 50-year perspective. Furthermore, VKM discusses how the birds’ welfare might be impacted by rearing, transport, release and exposure to pointing dogs. Finally, VKM provides a list of relevant diseases and assessed their potential impact on animal health during transport, rearing and release. Results and conclusions VKMs assessment show that there are several risks to biodiversity, animal health, and animal welfare from the release of captive bred common pheasants and grey partridges in Norway. The risk of increased competition for food, particularly in winter, with birds with similar niches as common pheasants and grey partridges, is low on a national scale and moderat on a local scale. This is particularly so for yellowhammer, Emberiza citronella, a species categorized as vulnerable on the national red list due to its progressive population decline caused by reduced availability of food during winter. There is a moderate risk for predation on invertebrates and negative impacts on flora. Indirectly, activities connected to the release of birds may lead to moderate risks of altered predator abundance and disease-mediated competition. VKM concludes that the ecological impacts will be more severe for redlisted species present within the release areas for common pheasants and grey partridges. Repeated release of common pheasants and grey partridges can lead to high risk of disease transmission to wild birds. .............

Abstract

Aim Grasslands of varying land-use intensity and history were studied to describe and test species richness and compositional patterns and their relationships with the physical environment, land cover of the surrounding landscape, patch geometry, and grazing. Location The mainland of Norway. Methods We utilized data from the Norwegian Monitoring Programme for Agricultural Landscapes, which recorded vascular plants from 569 plots, placed within 97 monitoring squares systematically distributed throughout agricultural land on the Norwegian mainland. We identified four grassland types: (i) moderately fertilized, moist meadows; (ii) overgrown agricultural land; (iii) cultivated pastures and disturbed ground; and (iv) natural/unfertilized and outfield pastures. Results Soil moisture and grazing measures were found to be important in explaining species compositional variation in all grassland types. Richness patterns were best explained by complex and differing combinations of environmental indicators. Nevertheless, negative (nitrogen and light level) or unimodal (pH) responses were similar across grassland types. Vegetation plots adjacent to areas historically and/or currently dominated by mires, forests, or pastures, as well as abandoned and overgrown grasslands, had a slightly higher species richness. Larger grasslands surrounding the vegetation plots had slightly less species than smaller grasslands. Conclusions This study demonstrates that data from a national monitoring programme on agricultural grasslands can be used for plant ecological research. The results indicate that climate-change-related shifts along moisture and nutrient gradients (increases) may alter both species composition and species richness in the studied grasslands. It is likely that large and contiguous managed (grass)land might affect areas perceived as remnants, probably caused by the transformation to homogeneous (agri)cultural landscapes reducing edge zones, which in turn may threaten the species pool and richness. The importance of land use and land-cover composition should be considered when planning management actions in extensively used high-latitude grasslands.