Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Modern apple growing requires relatively often orchard replacement due to release of superior cultivars or introduction of new growing technologies. Most of intensive apples orchards are established in the same site where apple trees were cultivated for a long period. Continuous cultivation of the same crop causes stress to plants and often leads to abnormal plant development and decreased productivity what is known as apple replant disease (ARD). Due to ban of chemical soil disinfection, other strategies how to overcome ARD must be developed. Rootstock is becoming to be one of the most important factors to solve this problem and one of the targets of new rootstock breeding programs is rootstock resistance or tolerance to ARD. Different origin and genetic background of rootstocks led to suggest that their adaptiveness to replanted soil will be different. EUFRIN (European fruit research institutes network) Apple and pear cultivar and rootstock testing group established replant trials in several European countries where new apple rootstocks from USA, Great Britain, Poland and Russia are tested. Current paper presents results of the trial performed at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2017-2021. On average of all rootstocks apple trees planted in the fresh soil were by 35% more vigorous and gave 71% higher yield. After the evaluation of tree growth and productivity characters rootstocks ‘G.41’ and ‘G.11’ were the most tolerant to ARD. Trees on rootstocks ‘G.935, ‘Cepiland-Pajam®2’ and ‘EM_02’ had significantly lower yields in replant soil, while tree growth was most stunted on ‘62-396-B10®’ and ‘EM_02’.

To document

Abstract

The mainstream public health community often treats the natural environment with ambivalence. On one side, there are infectious agents, extreme weather, and catastrophic events such as floods, landslides, wildfires, storms, and earthquakes that directly or indirectly sicken, injure, or kill people (Hartig et al. 2014). On the other hand, human health is positively connected with the characteristics and quality of nature near to where people live. This ambivalence becomes crucial in cities where the living environment has peculiar characteristics both for humans and other living organisms. Indeed, there are many ways in which the urban environment can affect human health, positively or negatively. BioCities develop as dynamic socio-ecological systems hosted by nature. Therefore, addressing the issue of health according to an integrated and holistic approach, which reduces the negative effects of the natural environment and optimises its positive aspects, is a primary pillar in the construction of BioCities.

To document

Abstract

With a view to integration into the European Union, the efficiency and competitiveness of the Kosovo’ different sectors (including agriculture) must be improved. This paper assesses the technical efficiency (TE) of horticultural farms through Data Envelopment Analysis (DEA) applying output orientation. It was founded that the TE of these farms is positively affected by their size, with large-size farms presenting overall higher technical efficiency. The research findings indicate that the degree of agricultural education does not have a significant impact on TE, whereas public assistance through subsidies and grants has a substantial and negative impact on TE, as confirmed by statistical analysis.

To document

Abstract

The ageing population, climate change, and labour shortages in the agricultural sector are driving the need to reevaluate current farming practices. To address these challenges, the deployment of robot systems can help reduce environmental footprints and increase productivity. However, convincing farmers to adopt new technologies poses difficulties, considering economic viability and ease of use. In this paper, we introduce a management system based on the Robot Operating System (ROS) that integrates heterogeneous vehicles (conventional tractors and mobile robots). The goal of the proposed work is to ease the adoption of mobile robots in an agricultural context by providing to the farmer the initial tools needed to include them alongside the conventional machinery. We provide a comprehensive overview of the system’s architecture, the control laws implemented for fleet navigation within the field, the development of a user-friendly Graphical User Interface, and the charging infrastructure for the deployed vehicles. Additionally, field tests are conducted to demonstrate the effectiveness of the proposed framework.

Abstract

This article considers the use of convex taxation as an instrument to regulate fisheries, comparing it with linear taxation with regards to economic yields and the risk of resource depletion. Convex taxation is shown to be central in studies with static models but has rarely been explored in the context of dynamic fisheries. Literature shows that a linear tax regime is superior to quantity regulation when the stock estimate is uncertain in terms of economic gains and its ability to prevent resource extinction. Furthermore, when cost uncertainty is involved, a strictly convex tax on landings can prove even more efficient. A numerical example with a single-species demersal fishery having both ecological and economic uncertainty demonstrates the gain in value of moving from a linear to a strictly convex tax.

To document

Abstract

Bumblebees carry out the complex task of foraging to provide for their colonies. They also conduct pollination, an ecosystem service of high importance to both wild plants and entomophilous crops. Insecticides can alter different aspects of bumblebee foraging behavior, including the motivation to leave the hive, finding the right flowers, handling flowers, and the ability to return to the colony. In the present study, we assessed how the neonicotinoid imidacloprid affects bumblebees' foraging behavior after exposure to four different treatment levels, including field-realistic concentrations (0 [control], 1, 10, and 100 μg/L), through sucrose solution over 9 days. We observed the behavior of several free-flying bumblebees simultaneously foraging on artificial flowers in a flight arena to register the bees' complex behavior postexposure. To conduct a detailed assessment of how insecticides affect bumblebee locomotor behavior, we used video cameras and analyzed the recordings using computer vision. We found that imidacloprid impaired learning and locomotor activity level when the bumblebees foraged on artificial flowers. We also found that imidacloprid exposure reduced sucrose solution intake and storage. By using automated analyses of video recordings of bumblebee behavior, we identified sublethal effects of imidacloprid exposure at field-realistic doses. Specifically, we observed negative impacts on consumption of sucrose solution as well as on learning and locomotor activity level. Our results highlight the need for more multimodal approaches when assessing the sublethal effects of insecticides and plant protection products in general.