Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

This trial aimed to assess the growth performance of trout (Oncorhynchus mykiss) fed novel formulations, evaluate fish welfare status, and determine flesh quality as part of the evaluation of sustainable feeds. A control diet containing fish meal and soy products (CTRL) was compared to: a diet with processed animal proteins (PAP); a diet without PAP (NoPAP); a PAP diet lower in protein (PAP−); and a NoPAP diet higher in protein (NoPAP+). Groups of 50 fish, weighing 58.84 ± 1.39 g (IBW), were allocated to 20 tanks and fed with formulated diets ad libitum over 91 days. Better growth performance was observed after the experiment in fish fed the NoPAP+ diet when compared to other diets. Protein retention was higher in CTRL diets than in PAP and PAP− diets. Protein and phosphorous digestibility were lower in fish fed PAP− diet. Diets did not influence the texture analysis. However, sensory analysis revealed higher acceptance for fish fed the NoPAP diet when compared to the PAP diet. Lysozyme was higher in the NoPAP diet than in other treatments. In addition, long-term predictions using FEEDNETICSTM software suggest some of these alternative formulations may be economically sustainable. Overall, these results support the hypothesis that the new formulations are viable options for trout farming.

To document

Abstract

Background and terms of reference Farmed Atlantic salmon (Salmo salar) that escape into the wild could interbreed with native fish, posing a potential risk to the genetic diversity of wild Atlantic salmon populations. The Atlantic salmon in aquaculture are diploid, meaning the fish has two sets of chromosomes. To mitigate the genetic impact on wild populations, the concept of producing sterile triploid farmed Atlantic salmon has been suggested as a solution. However, it is important to ensure that the utilization of triploids in commercial farming aligns with the regulations set forth in the Norwegian Animal Welfare Act. The Norwegian Food Safety Authority (NFSA) requested the Norwegian Scientific Committee for Food and Environment (VKM) to do an assessment about health- and welfare consequences in triploid Atlantic salmon under commercial farming conditions, as compared to diploid counterparts. VKM was also requested to describe the underlying physiological mechanisms concerning consequences of triploidy as well as address potential measures to reduce the negative impacts on the health and welfare of the fish. Methods A working group consisting of members with expertise in salmonid biology, aquaculture systems, veterinary medicine, fish health and welfare, virology, bacteriology, parasitology, breeding and genetics has drafted this opinion. To answer the Terms of Reference as mandated by the NFSA, the authors addressed fish health and welfare as a unified concept in this report. Two external experts have reviewed and provided their opinion before it was assessed and approved by the VKM’s Panel on Animal Health and welfare. The literature used in this work was peer-reviewed studies retrieved from a search in four databases as well as non peer-reviewed reports. Selection of studies was conducted independently by two members in the working group and based on predefined inclusion and exclusion criteria. Conclusions Under commercial farming conditions, triploid Atlantic salmon are often found to have lower standards of health and welfare compared to diploids. For example, field and experimental studies have found triploids to be more prone to skeletal and heart deformities, and cataracts, while field studies suggest that under commercial farming conditions they cope less well with handling and are more susceptible to skin ulcers. However, research has indicated that some of the effects of triploidy can be mitigated through specialized diets or environmental adjustments. There is a noticeable tendency across farm studies and experimental trials for triploid salmon to be equal or larger in size at the end of freshwater phase, but equal or smaller in size at the end of the seawater phase. Most publications conclude that within what is considered the optimal temperature range of diploids, oxygen consumption rate, oxygen binding capacity, and aerobic swimming capacity do not significantly differ between triploid and diploid Atlantic salmon. However, findings from experimental trials suggest a lower optimal temperature range for triploids, and data consistent across studies indicate that triploids possess lower tolerance to hypoxia at elevated temperatures. Triploid Atlantic salmon are less robust to higher water temperatures than diploid, and have other nutritional needs than diploids, especially regarding phosphorus, and histidine. There are few studies on the susceptibility of triploid salmon to infectious agents and diseases. Field observations indicate that triploid fish are more susceptible to primary infectious salmon anaemia (ISA) outbreaks than diploids under commercial farming conditions at the level of the farm, and at cage level within farms that experience an ISA outbreak. A higher susceptibility to the ISA virus would potentially affect not only the health and welfare of the triploid fish at the farm with an outbreak but may potentially spread to other farms. .............

To document

Abstract

Virtual fencing systems have emerged as a promising technology for managing the distribution of livestock in extensive grazing environments. This study provides comprehensive documentation of the learning process involving two conditional behavioral mechanisms and the documentation of efficient, effective, and safe animal training for virtual fence applications on nursing Brangus cows. Two hypotheses were examined: (1) animals would learn to avoid restricted zones by increasing their use of containment zones within a virtual fence polygon, and (2) animals would progressively receive fewer audio-electric cues over time and increasingly rely on auditory cues for behavioral modification. Data from GPS coordinates, behavioral metrics derived from the collar data, and cueing events were analyzed to evaluate these hypotheses. The results supported hypothesis 1, revealing that virtual fence activation significantly increased the time spent in containment zones and reduced time in restricted zones compared to when the virtual fence was deactivated. Concurrently, behavioral metrics mirrored these findings, with cows adjusting their daily travel distances, exploration area, and cumulative activity counts in response to the allocation of areas with different virtual fence configurations. Hypothesis 2 was also supported by the results, with a decrease in cueing events over time and increased reliance with animals on audio cueing to avert receiving the mild electric pulse. These outcomes underscore the rapid learning capabilities of groups of nursing cows in responding to virtual fence boundaries.

To document See dataset

Abstract

Global measures to bring net-zero-carbon and zero-waste emissions are expanding at a rapid pace. Currently, only 16% of the plastic waste from the food industrial sector is reprocessed and recycled, which is way lesser than its accumulation. Several countries have imposed a ban on single-use plastic derived from food and/or beverage industries. All these constraints and challenges have encouraged researchers to find a sustainable alternative to petroleum-based food packaging. The environmentally friendly substitute can be the bio-based polymer material derived from agri-food and marine wastes that connect the waste loop in the current economic model. This waste has the most valuable biopolymer mainly present in the cell wall matrix of plants, animals, bacteria, fungi, and algae. All these biopolymers are either accumulated in a landfill or not entirely harvested their high-value compounds as a potential feedstock. Nevertheless, bio-based polymers have better thermos-mechanical properties that can resist various conditions. They comprise superior functional properties when these biopolymers are coupled with other organic compounds such as composite films or multilayer packaging films which enhance the shelf-life of the food. Overall, biopolymers readily react with the soil microbes under specified environmental conditions that can significantly enhance the biodegradability of packaging material. This unique quality is envisaged to solve the existing problems and detrimental effects of synthetic polymer usage in the food industry. In this background, in this chapter, the origin of biopolymers and their potential functionality, mechanical property, and degradability as food packaging materials are discussed. Their current challenges and possible future prospects are also meticulously highlighted.

To document

Abstract

Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16–18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.

Abstract

LoRa-WAN sensors were used to compare methods for determining walking distances by grazing cattle in near real-time. The accuracy of relying on a global positioning system (GPS) alone or in combination with motion data derived from triaxial accelerometers was compared using stationary control trackers (Control) placed in fixed field locations (n=6) or vs. trackers (Animal) mounted on cows (n=6) grazing on pasture at the New Mexico State University’s Clayton Livestock Research Center. Trackers communicated motion data at 1-minute intervals and GPS positions at 15-minute intervals for seven days. Daily distance walked was determined using: 1) raw GPS data (RawDist), 2) data with erroneous GPS locations removed (CorrectedDist), or 3) data with erroneous GPS locations removed and with GPS data associated with the static state excluded (CorrectedDist_Act). Distances were analyzed via one-way ANOVA to compare Control vs. Animal deployment effects. No difference (P=0.43) in walking distance was detected between Control vs. Animal for RawDist. However, distances calculated for CorrectedDist differed (P<0.01) between the two tracker deployments. Due to the random error of GPS measurements, CorrectedDist for stationary devices differed (P=0.01) from zero. The walking distance calculated by CorrectedDist_Act differed (P<0.01) between Control vs. Animal trackers, with distances for Control trackers not differing (P=0.44) from zero. The fusion of GPS and accelerometer data was a more suitable method for calculating walking distance by grazing cattle. This result may highlight the value of combining more than one source of independent sensor data in Precision Livestock Farming applications.

To document

Abstract

Objective: Precision livestock farming technologies show great promise for the management of extensive, arid rangelands, but more practical knowledge is needed to allow ranchers to determine potential applications and limitations for adoption. We tested a long-range wide area network (LoRa-WAN) precision livestock system over 3 mo (April–June 2020) in a ranch in southwest New Mexico, USA. The system monitors cattle position and movements, precipitation, and water trough water levels at pasture and ranch scales, in real time. Materials and Methods: Here we describe the components of the system and share what we have learned from our preliminary experiences. This system included a solar-power LoRa-WAN receiving station with the corresponding gateway, radio frequency antenna (824–894 MHz), and Wi-Fi bridge for data transmission into the Internet. The testbed network for testing LoRa-WAN sensors included 43 GPS-trackers deployed on lactating beef cows and 2 environmental sensors used to monitor precipitation regimens and trough water levels, respectively. Results and Discussion: The system collected data consistently for the trough levels and precipitation, whereas data from the cow GPS-trackers was highly heterogeneous. On average, 46 ± 4% of daily data packets logged by GPS-trackers were successfully transmitted through the LoRa-WAN system, exceeding 80% of successful transmission in several cases. This report documents the necessary infrastructure, performance, and maintenance of system components, which could be of significant information value to ranchers and researchers with a desire to deploy similar monitoring systems. Implications and Applications: This Technical Note documents the implemetation of a LoRa-WAN monitoring system at the ranch scale for a 3-mo period. The system has allowed the ranch manager and assisting staff to efficiently manage cattle inventories and promptly address animal welfare concerns. However, further research is required to assess the scalability of this system across commercial operating cattle ranches in the Southwest United States, thereby unlocking its potential for broader adoption and effect.