Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Sammendrag

The industrial demand for wax is about 1.000.000 tons annually from which about only 3% is covered by natural waxes and 97% (mainly as paraffin) is produced from non-renewable (mainly fossil) sources. The total market value for this market is about 600-700 M€ per year. Compared to synthetic waxes which are fossil (oil) based and chemically processed materials, the natural waxes are produced by biogenesis, renewable and thus contribute to sustainable processes and reduced carbon emission. Also, natural waxes show well-balanced composition and perform in many applications much better than their synthetic counterparts. In Scandinavia we have very interesting candidates for domestic wax production i.e. wild berries such as lingonberry (Vaccinium vitis-idae L.) and bilberry (Vaccinium myrtillus L.) are abundantly found and important industrially utilized wild berries in arctic nature but we have also other interesting species like black crowberry (Empetrum nigrum) and bog bilberry (Vaccinium uliginosum). Wild berries are used increasingly by food industry due to their reported health and probiotic effects but much of the resource material is wasted as side stream after the food processing. In this project we want to develop methods for exploiting the raw material still present in the side stream and thus increasing its value. The broad expertise areas of the researchers involved covering biology, technology and marketing offer excellent background for the present project. The results achieved will be presented in the meeting. The project is funded by Interreg Nord.

Sammendrag

To improve environmental sustainability it is important that all sectors in a society contribute to improving the utilization of inputs as energy and nutrients. In Norway, dairy farming contributes with an important share to the added value from the agricultural sector, although there is little information available about utilization of energy and nitrogen (N). Many results on sustainability have been published on dairy farming. However, due to Norway’s Nordic climatic conditions, mountainous and rugged topography and an agricultural policy that can design its own prices and subsidies, results from other countries are hardly representative for Norwegian conditions. To bridge this gap, the objective of this study was to analyse if the utilisation of nitrogen and energy in dairy farming in Norway can be improved to strengthen its environmental sustainability. Data were collected from 2010 to 2012 on 10 conventional and 10 organic farms in a region in central Norway with dairy farming as the main enterprise. The farms varied in area, number of dairy cows and milk yield. For nitrogen, a farm gate balance was applied and supplemented with nitrogen fixation by clover and atmospheric N-deposition. The total farm area was broken down into three categories: dairy farm area utilized directly by the farm, off-farm area needed to produce imported roughages and concentrates, and free rangeland that only can be used for grazing.

Til dokument

Sammendrag

Reduced N-surpluses in dairy farming is a strategy to reduce the environmental pollution from this production. This study was designed to analyse the important variables influencing nitrogen (N) surplus per hectare and per unit of N in produce for dairy farms and dairy systems across 10 certified organic and 10 conventional commercial dairy farms in Møre og Romsdal County, Norway, between 2010 and 2012. The N-surplus per hectare was calculated as N-input (net N-purchase and inputs from biological N-fixation, atmospheric deposition and free rangeland) minus N in produce (sold milk and meat gain), and the N-surplus per unit of N-produce as net Ninput divided by N in produce. On average, the organic farms produced milk and meat with lower N-surplus per hectare (88 ± 25 kg N·ha−1) than did conventional farms (220 ± 56 kg N·ha−1). Also, the N-surplus per unit of N-produce was on average lower on organic than on conventional farms, 4.2 ± 1.2 kg N·kg N−1 and 6.3 ± 0.9 kg N·kg N−1, respectively. All farms included both fully-cultivated land and native grassland. Nsurplus was found to be higher on the fully cultivated land than on native grassland. N-fertilizers (43%) and concentrates (30%) accounted for most of the N input on conventional farms. On organic farms, biological Nfixation and concentrates contributed to 32% and 36% of the N-input (43 ± 18 N·kg N−1 and 48 ± 11 N·kg N−1), respectively. An increase in N-input per hectare increased the amount of N-produce in milk and meat per hectare, but, on average for all farms, only 11% of the N-input was utilised as N-output; however, the N-surplus per unit of N in produce (delivered milk and meat gain) was not correlated to total N-input. This surplus was calculated for the dairy system, which also included the N-surplus on the off-farm area. Only 16% and 18% of this surplus on conventional and organic farms, respectively, was attributed to surplus derived from off-farm production of purchased feed and animals. Since the dairy farm area of conventional and organic farms comprised 52% and 60% of the dairy system area, respectively, it is crucial to relate production not only to dairy farm area but also to the dairy system area. On conventional dairy farms, the N-surplus per unit of N in produce decreased with increasing milk yield per cow. Organic farms tended to have lower N-surpluses than conventional farms with no correlation between the milk yield and the N-surplus. For both dairy farm and dairy system area, N-surpluses increased with increasing use of fertilizer N per hectare, biological N-fixation, imported concentrates and roughages and decreased with higher production per area. This highlights the importance of good agronomy that well utilize available nitrogen.

Til dokument

Sammendrag

Due to the limited resources of fossil fuels and the need to mitigate climate change, energy utilisation for all human activity has to be improved. The objective of this study was to analyse the correlation between energy intensity on dairy farms and production mode, to examine the influence of machinery and buildings on energy intensity, and to find production related solutions for conventional and organic dairy farms to reduce energy intensity. Data from ten conventional and ten organic commercial dairy farms in Norway from 2010 to 2012 were used to calculate the amount of embodied energy as the sum of primary energy used for production of inputs from cradle-to-farm gates using a life cycle assessment (LCA) approach. Energy intensities of dairy farms were used to show the amount of embodied energy needed to produce the inputs per metabolizable energy in the output. Energy intensities allow to easily point out the contribution of different inputs. The results showed that organic farms produced milk and meat with lower energy intensities on average than the conventional ones. On conventional farms, the energy intensity on all inputs was 2.6 ± 0.4 (MJMJ?1) and on organic farms it was significantly lower at 2.1 ± 0.3 (MJ MJ?1). On conventional farms, machinery and buildings contributed 18% ± 4%, on organic farms 29% ± 4% to the overall energy use. The high relative contribution of machinery and buildings to the overall energy consumption underlines the importance of considering them when developing solutions to reduce energy consumption in dairy production. For conventional and organic dairy farms, different strategies are recommend to reduce the energy intensity on all inputs. Conventional farms can reduce energy intensity by reducing the tractor weight and on most of them, it should be possible to reduce the use of nitrogen fertilisers without reducing yields. On organic dairy farms, energy intensity can be reduced by reducing embodied energy in barns and increasing yields. The embodied energy in existing barns can be reduced by a higher milk production per cow and by a longer use of the barns than the estimated lifetime. In the long run, new barns should be built with a lower amount of embodied energy. The high variation of energy intensity on all inputs from 1.6 to 3.3 (MJ MJ?1) (corresponding to the energy use of 4.5e9.3 MJ kg-1 milk) found on the 20 farms shows a potential for producing milk and meat with lower energy intensity on many farms. Based on the results, separate recommendations were provided for conventional and organic farms for reducing energy intensity.

Til dokument

Sammendrag

Climate change and its effects on grassland productivity vary across Europe. The Mediterranean and Nordic regions represent the opposite ends of a gradient of changes in temperature and precipitation patterns, with increasingly warmer and wetter winters in the north and increasingly warmer and drier summers in the south. Warming and elevated concentration of atmospheric CO2 may boost forage production in the Nordic region. Production in many Mediterranean areas is likely to become even more challenged by drought in the future, but elevated CO2 can to some extent alleviate drought limitation on photosynthesis and growth. In both regions, climate change will affect forage quality and lead to modifications of the annual productivity cycles, with an extended growing season in the Nordic region and a shift towards winter in the Mediterranean region. This will require adaptations in defoliation and fertilization strategies. The identity of species and mixtures with optimal performance is likely to shift somewhat in response to altered climate and management systems. It is argued that breeding of grassland species should aim to (i) improve plant strategies to cope with relevant abiotic stresses and (ii) optimize growth and phenology to new seasonal variation, and that plant diversity at all levels is a good adaptation strategy.