Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Growth cessation and floral initiation in black currant and red raspberry are jointly controlled by the interaction of temperature and short-day (SD) conditions, and the processes coincide in time in both natural and controlled environments. The critical photoperiods for the two successional responses were found to be approximately 15 and 16 h, respectively, for a range of Western-European black currant cultivars. Both cessation of growth and floral initiation are promoted and enhanced by increasing temperature in the 9 to 24°C range. In contrast, biennial-fruiting red raspberry has a maximum temperature limit for growth cessation and floral initiation. At temperatures above 16°C, most cultivars grow and remain vegetative regardless of day length conditions, at 12 to 16°C they cease growing and initiate flower primordia in photoperiods <15 h, while at temperatures ≤12°C they cease growing and initiate floral primordia regardless of day length. In the annual-fruiting (primocane) types of red raspberry on the other hand, floral initiation is not constrained by high temperature, but readily takes place at temperatures up to 30°C. In addition, floral initiation is also enhanced by long day (LD) conditions in most of these cultivars. Another fundamental physiological difference is that while floral primordia of the biennial types become dormant after initiation, they proceed directly to anthesis in the annual-fruiting types. Chilling at -5°C, and in the -5 to +5°C temperature range were found to be optimal for breaking of bud dormancy and promotion of flowering in black currant and red raspberry, respectively. In black currant, 14 weeks of chilling were optimal, while for raspberry, 20 or more weeks were required for full dormancy release and promotion of flowering along the entire length of the raspberry cane. The consequences of climate warming for the production of these species in different climatic regions are discussed.

To document

Abstract

Four raspberry cultivars were grown at two different latitudes namely in Geisenheim (DE, 49°60’N; 7°57’E) and in Kapp (NO, 60°42’N; 10°52’E) to investigate the impact of these growing sites on primary and secondary fruit chemical ingredients in the 2017 season. Fruits were harvested at two picking dates each with three field replications. Contents of °Brix, glucose, fructose, sucrose, organic acids, ascorbic acid, polyols, total polyphenols, and anthocyanins were analyzed in the fruits. The geographic growing sites, which in this case is more than10 latitudes between HGU in Germany and NIBIO in Norway, has partly no, partly significant effects on the primary and secondary ingredients of the investigated raspberry cultivars. In respect to the created data set, temperatures shortly before or at the picking dates were not considered. It may be expected that temperatures at harvest have an effect on the fruit ingredients and therefore on a further classification of the samples.

To document

Abstract

Microbes are central drivers of soil processes and in-depth knowledge on how agricultural management practices effects the soil microbiome is essential in the development of sustainable food production systems. Our objective was therefore to explore the long-term effects of organic and conventional cropping systems on soil bacterial and fungal quantity, their community structures and their combined function. To do so, we sampled soil from a long-term experiment in Southeast Norway in 2014, 25 years after the experiment was established, and performed a range of microbial analyses on the samples. The experiment consists of six cropping systems with differences in crop rotations, soil tillage, and with nutrient application regimes covering inorganic fertilizers, cattle slurry (both separately and combined with inorganic fertilizers) and biogas residues from digested household biowaste. The quantity of soil microbes was assessed by extraction of microbial C and N and by analysis of soil DNA (bacterial 16S rRNA, and fungal rRNA internal transcribed spacer region). The structures of the microbial communities were determined and assessment of relatedness of bacterial and fungal communities was done by the unweighted pair group method. Estimates of richness and diversity were based on numbers of unique operational taxonomic units from DNA sequencing and the function of the microbial assembly was measured by means of enzyme assays. Our results showed that production systems including leys had higher microbial biomass and higher numbers of bacterial and fungal gene copies than did systems with cash crops only. A cropping system which appeared to be particularly unfavourable was a reference-system where stubble, roots and exudates were the single source of organic material. Production system significantly affected both bacterial and fungal community structures in the soil. Systems including leys and organic fertilization had higher enzyme activities than did systems with cash crops only. An inclusion of ley in the rotation did not, however, increase either microbial richness or microbial diversity. In fact, the otherwise suboptimal reference-system appeared to have a richness and diversity of both bacteria and fungi at levels similar to those of the other cropping systems, indicating that the microbial function is largely maintained under less favourable agricultural treatments because of the general resilience of soil microorganisms to various stresses. Neither disturbance through tillage nor the use of chemical fertilizer or chemical plant protection measures seemed as such to influence soil microbial communities. Thus, no differences between conventional and organic farming practices as such were found. We conclude that the choice of agricultural management determines the actual microbial community structure, but that biodiversity in general is almost unaffected by cropping system over many years. Adequate addition of organic material is essential to ensure a properly functioning microbial ensemble and, thus, to secure soil structure and fertility over time.