Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Knowledge of the temporal variation in reproductive success and its key driving factors is crucial in predicting animal population persistence. Few studies have examined the effects of a range of explanatory factors operating simultaneously on the same population over a long period. Based on 41 years of monitoring (1979–2019), we tested prevailing hypotheses about drivers of annual variation in breeding success in two sympatric species of boreal forest grouse—the capercaillie (Tetrao urogallus) and the black grouse (T. tetrix)—in a 45 km2 boreal forest landscape. From counts in early August, we measured breeding success (chicks/hen) along with potential determining factors. We formulated five main hypotheses on causes of variation (hen condition, chick weather, chick food, predation, demographic characteristics) and derived 13 associated explanatory variables for analysis. We first tested the five hypotheses separately and then used model selection (AICc) to rank the best predictive models irrespective of hypotheses. Lastly, we used path analysis to illuminate potential causal relationships. Barring demographic characteristics, all hypotheses were supported, most strongly for chick food and predation. Among predictor variables, chick food (insect larvae and bilberry fruit crops), vole and fox abundances, the winter-NAO index, and temperature after hatching, had the strongest effect sizes in both species. Precipitation after hatching had no detectable effect. Model selection indicated bottom-up factors to be more important than predation, but confounding complicated interpretation. Path analysis suggested that the high explanatory power of bilberry fruiting was due not only to its direct positive effect on chick food quality but also to an indirect positive effect on vole abundance, which buffers predation. The two components of breeding success—proportion of hens with broods and number of chicks per brood—were uncorrelated, the former having the strongest effect. The two components had different ecological correlates that often varied asynchronously, resulting in overall breeding success fluctuating around low to moderate levels. Our study highlights the complexity of key explanatory drivers and the importance of considering multiple hypotheses of breeding success. Although chick food appeared to equal or surpass predation in explaining the annual variation in breeding success, predation may still be the overall limiting factor. Comparative and experimental studies of confounded variables (bilberry fruiting, voles, and larvae) are needed to disentangle causes of variation in breeding success of boreal forest grouse.

Abstract

Background: Tardigrades are common in most habitats, however few studies have focusedon large faunistic survey, specifically on tardigrade diversity in forests. Up to now, only 61 species have been recorded in different types of forest in Norway with an additional 25 found in limnic environments in forests. Although little is known about the ecological preferences of many species, previous studies have found that tardigrade diversity and community composition are significantly affected by ecological variables. In this study we associate georeferenced tardigrade species records with forest type, substrate type and substrate composition in order to see if tardigrade diversity and species communities can be associated with ecological characteristics of Norwegian forests. Methods: In total 390 moss, lichen and litter samples were collected from 12 forests in central and southern Norway in the summers of 2017 and 2018 and later stored in paper envelopes. For the identification modern literature and keys for specific genera and groups of species were used. For statistical analyses, moss and lichen substrate of each sample was classified according to the main species, life form, growth forms and habitat of substrate and associated with each tardigrade identification and sample metadata. Results: A total of 17 407 specimens were identified, encompassing in total 132 species (including some new species). Species richness increases with precipitation, but does not change with temperature or precipitation seasonality. The distribution of species richness between life forms and forest types showed considerable variation within and among the variables. Disregarding variables with low sample numbers, among life forms only acrocarpous moss samples appeared to deviate with respect to species richness, containing less species than substrates with other life forms. Conclusions: Tardigrades in Norwegian forest are extremely abundant, frequent and diverse. Moreover, it appears that that certain species and/or entire communities prefer specific microhabitats.

To document

Abstract

Population densities of several cervid species have increased in recent decades in North America and Europe, and cervids frequently eat and damage agricultural crops. Competition and depletion of natural food resources are the main mechanisms for the density-dependent decline in vital rates of large herbivores. The extent to which access to agricultural crops can buffer density effects in cervid populations, however, is unknown. Agricultural grasslands cover more than a third of the European agricultural area, and red deer (Cervus elaphus) use these grasslands in many European countries. Over the past few decades, such grasslands have been subject to management intensification (with renewal and fertilization) in some areas and abandonment (no longer being harvested) in other areas. We used generalized linear mixed-effects models to examine the development of body masses of red deer in Norway during a period of population density increase in 16 local management units with different availability of cultivated grasslands (0.87–6.44%) in a region with active management of grasslands (Tingvoll, n = 5,780, 2000–2019) and a region with ongoing abandonment (Hitra, n = 10,598, 2007–2020). There was a consistent decline in the body mass of red deer linked to increased population density in both regions. A higher proportion of agricultural grassland was linked to higher body mass and lower density effects in both sexes and across all age classes. There is a link between body mass, survival, and reproduction. Therefore, the buffering of density effects of access to agricultural crops will fuel cervid population growth and lead to less natural regulation of abundance, making it more difficult to control dense cervid populations by harvesting.

To document

Abstract

Milder winters and extended wetter periods in spring and autumn limit the amount of time available for carrying out ground-based forest operations on soils with satisfactory bearing capacity. Thus, damage to soil in form of compaction and displacement is reported to be becoming more widespread. The prediction of trafficability has become one of the most central issues in planning of mechanized harvesting operations. The work presented looks at methods to model field measured spatio-temporal variations of soil moisture content (SMC, [%vol]) – a crucial factor for soil strength and thus trafficability. We incorporated large-scaled maps of soil characteristics, high-resolution topographic information – depth-to-water (DTW) and topographic wetness index – and openly available temporal soil moisture retrievals provided by the NASA Soil Moisture Active Passive mission. Time-series measurements of SMC were captured at six study sites across Europe. These data were then used to develop linear models, a generalized additive model, and the machine learning algorithms Random Forest (RF) and eXtreme Gradient Boosting (XGB). The models were trained on a randomly selected 10% subset of the dataset. Predictions of SMC made with RF and XGB attained the highest R2 values of 0.49 and 0.51, respectively, calculated on the remaining 90% test set. This corresponds to a major increase in predictive performance, compared to basic DTW maps (R2 = 0.022). Accordingly, the quality for predicting wet soils was increased by 49% when XGB was applied (Matthews correlation coefficient = 0.45). We demonstrated how open access data can be used to clearly improve the prediction of SMC and enable adequate trafficability mappings with high spatial and temporal resolution. Spatio-temporal modelling could contribute to sustainable forest management.