Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2007

Abstract

Forest health monitoring may be done with remote sensing. Satellite based SAR is one promising technology as it works day and night and with cloud cover, and because it is sensitive to 3D properties. We here apply an interferometry based XDEM approach, where we assumed that an increasing defoliation would cause an increasing X band penetration downwards into the canopy layer, and that the penetration depth is a function of the amount of leaf area index (LAI) penetrated. We had at hand data for a 4 km2 forest area, having an SRTM X and C band SAR data set from 2000; a discrete-return laser scanning data set from 2003; and ground based measurements of some hundred trees and a forest stand map from 2003. We initially adjusted the XDEM and CDEM using elevation data from some agricultural fields nearby the forest using an official, Norwegian DTM data base having a 25mx25m spatial resolution. All further analyses were carried out on a 10mx10m grid. With the laser data we obtained a DTM and a canopy surface model (CSM), where the latter was set to the 75 percentile of the DZ data in each grid cell. The X band penetrated about six m downwards into the canopy layer, which means that for all grid cells having a forest canopy lower than six m, the XDEM was around zero. With an increasing DSM from six m upwards, the DSM could be approximated by the linear function DSM = 6 + 0.91*XDEM, having a RMSE of 4.0 m. The laser data provided the possibility to estimate LAI in every grid cell and at any height in that cell. For every grid cell, an LAI value was estimated for the forest canopy being above the XDEM height, using the method of Solberg et al (2006), where LAI = C * ln(N/Nb), where LAI is effective LAI above a given height; C is a constant calibrated from ground based measurements with the value 2.0, N is the total number of laser pulses; and Nb is the number of laser pulses below the given height. The median LAIaboveX value was 1.42, and 25-75 percentile values being 0.86-2.15. Also, in order to have a more homogeneous data set we redid the analyses using only spruce dominated stands, and excluding all grid cells at stand borders. The latter was set as grid cells that had neighbour grid cells in a neighbour stand. This had however, only a minor influence on the results.

Abstract

In winter 2000-2001, there was a serious outbreak of Gremmeniella abietina Morelet in southeastern Norway. During the outbreak, we noted that injured Scots pine trees (Pinus sylvestris L.) developed secondary buds in response to the fungus attack, and we decided to study the relationship between injury, appearance of secondary buds and recovery of the trees thereafter. For this purpose, 143 trees from 10 to 50 years of age were chosen and grouped into crown density classes. Injury was assessed in detail, and buds were counted before bud burst in the spring of 2002. In addition, a subset of 15 trees was followed through the summer of 2002 to assess recovery. All injured trees developed secondary buds, with a clear overweight of dormant winter buds in proportion to interfoliar buds. Healthy control trees did not develop secondary buds at all. The secondary buds appeared predominantly on the injured parts of the tree; interfoliar buds in particular developed just beneath the damaged tissue. Most of the secondary buds died during the winter of 2001-2002, mainly because the fungus continued to spread after the first outbreak. Many of the remaining buds developed shoots with abnormal growth during the summer. Secondary buds may help trees to recover from Gremmeniella attacks, but this strategy may fail when the fungus continues to grow and injure the newly formed buds and shoots.

Abstract

The area of wood protection is in a period of change. New tools are needed to understand the mode of action, and to further improve the new wood protection systems. A set of useful tools are found among the molecular methods. This paper presents an overview of some of the tools available, and the methods are exemplified by papers within the frame of wood protection issues. However, there is still a great unexplored potential within the field of wood protection by the use of various molecular methods. The majority of the work using molecular methods has been performed on species identification issues and within species variation. This paper lists some new promising molecular methods for wood protection issues and a presentation of a new project. The new project will help to gain some new knowledge about how the fungal decay processes are affected by different wood modification systems.

Abstract

In the context of an ongoing project on REMote sensing of FORest health (REM-FOR), we analyze airborne high-resolution hyperspectral images of a pine-dominated region in southeast Norway heavily attacked by the Pine sawfly Neodiprion sertifer, leading to severe defoliation. Leaf Area Index (LAI) is used as a proxy of the crown density, and comparing LAI maps from before and after the attack lead to indicators for damage extent. We discuss the application of the Forest Reflectance Model (FRT) of Kuusk and Nilson, which was designed for the application to (managed) Northern European Forests, to model the spectral response from the canopy. It is based on conventional forest inventory data, species-dependent parametrized crown shapes, canopy LAI, needle clumping index, and needle optical properties. Here, however, we run the model in an inverse mode, by iteratively minimizing the discrepancy between measured and simulated reflectances, and predicting the LAI, keeping known parameters of the model fixed. The LAI values are then compared to those obtained with either ground-based Licor LAI2000 measurements, or with airborne laser-scanning. Some preliminary results of this modelling concept for the case study are discussed.

Abstract

River floods may cause considerable damage. Water management strategies intend tomoderate or mitigate the severe effects of extreme discharge events. In this context,techniques for the detection and attribution of changes is of crucial importance. Extremeflood events seem to occur more frequently in recent decades in central Europe.It is anticipated that climate change and weather regime shifts may contribute to this...