Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2014

Abstract

Variable retention harvesting is acknowledged as a cost-effective conservation measure, but previous studies have focused on the environmental value and planning cost. In this study, a model is presented for optimizing harvesting cost using a high resolution map generated from airborne laser scanning data. The harvesting cost optimization model is used to calculate the objective value of different scenarios. By comparing the objective values, better estimates of the opportunity cost of woodland key habitats are found. The model can be used by a forest manager when evaluating what silvicultural treatments to implement or as an input for improving the nature reserve selection problem for woodland key habitats or retention patches. The model was tested on four real-world cases, and the results indicate that terrain transportation costs vary more than reported in the literature and that it may be worthwhile to divide the opportunity cost into its direct and indirect components.

To document

Abstract

Treatability of wood is a function of anatomical properties developed under certain growing conditions. While Scots pine sapwood material normally is considered as easy to impregnate, great variations in treatability can be observed. In order to study anatomical differences in the structural elements of transverse fluid passage, wood material with contrasting treatability has been compared. Ray composition and resin canal network, membrane areas of fenestriform pits in the cross-field as well as dimension and properties of bordered pits were investigated. The results showed large anatomical differences between the two contrasting treatability groups. Refractory Scots pine sapwood samples developed more rays per mm2 tangential section, while they were on average lower in cell numbers than rays found in easily treatable material. Easily treatable material had more parenchyma cells in rays than refractory material. At the same time, a larger membrane area in fenestriform pits in the cross-field was observed in the easily treatable sample fraction. Differences in the composition of resin canal network were not observed. Refractory samples developed on average smaller bordered pit features, with relatively small formed pit apertures compared to the easily treatable samples. In refractory Scots pine sapwood material, the structural elements of fluid passage such as bordered pit dimensions, fenestriform pits in the cross-field and parenchyma cells were altogether developed in smaller dimensions or number. Wood samples from better growing conditions and sufficient water supply showed a better treatability in this study.