Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2014

To document

Abstract

In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forestarea contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better targeting high conservation value areas.

To document

Abstract

Understanding the responses of ecological communities to perturbation is a key challenge within contemporary ecology research. In this study we seek to separate specifi c community responses from general community responses of plant communities to exclusion of large cervid herbivores. Cervid herbivory and forestry are the main drivers of vegetation structure and diversity in boreal forests. While many studies focus on the impact of cervids on trees, a high proportion of the biodiversity and ecosystem services in boreal forests is found in the fi eld layer. However, experimental approaches investigating the infl uence of herbivory on understory vegetation are highly localised. In this study we use a regionalscale design with 51 sites in four boreal forest regions of Norway, to investigate the infl uence of cervid herbivory on the physical and ecological structure of fi eld layer vegetation. Our study sites cover a range of forest types diff ering in productivity, management and dominant cervid species, allowing us to identify generic responses and those that are specifi c to particular conditions. We found that the height of the fi eld layer and the abundances of individual species were most susceptible to change following short-term cervid exclusion across diff erent forest types and cervid species. Total vegetation density and vascular plant diversity did not respond to cervid exclusion on the same time scale. We also found that the fi eld-layer vegetation in clear-cut forests used by moose was more susceptible to change following cervid exclusion than mature forests used by red deer, but no strong evidence that the response of vegetation to herbivore exclusion varied with productivity. Our study suggests that the parameters that respond to cervid exclusion are consistent across forest types, but that the responsiveness of diff erent forest types is idiosyncratic and hard to predict.