Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Farmers, researchers and policy-makers are increasingly concerned about the potential impacts of climate change. Researchers are using various climate models to assess the impacts and identifying relevant alternative adaptation strategies to mitigate climate change. In India, rice is the major cereal crop grown and is influenced due to climate change and variability, inadequate water supply, labour shortage and methane emissions from rice ecosystems. This necessitates adoption action and upscaling of key adaption strategies like direct seeded rice (DSR) using validated data from rice growing areas in India. The study used experimental data of 2010–2014 and field survey data of DSR and non-DSR farmers collected during 2014. Results show that DSR method has incurred less tillage and labour costs by eluding puddling and transplantation by labour. Large-scale adoption of DSR was observed during 2012–2015 in Guntur district of Andhra Pradesh. This was mainly due to the delayed monsoon and water supply, reduction in cost of cultivation, capacity building of stakeholders and their active involvement in awareness and training programmes. The study has demonstrated that integrated extension approach in technology dissemination and scaling-out through stakeholder integration is crucial. However, a mission mode framework is needed for technology upscaling at system level.

To document

Abstract

Aim Root growth strategies may be critical for seeding survival and establishment under dry conditions, but these strategies and their plasticity are little known. We aim to document the ability of young grass seedlings to adjust their root system architecture, root morphology and biomass allocation to roots to promote water uptake and survival under progressive drought. Methods Seedlings growing in columns filled with sand and exposed to drought or well-watered controls were repeatedly harvested for determination of biomass fractions, root length, −architecture and -morphology in a greenhouse experiment. Allometric scaling exponents and standardised major axis regression were used to investigate allocation patterns. Results Young seedlings were able to sustain leaf turgor and functions during eight weeks of progressive drought through phenotypic plasticity of the primary root system producing deeper and simpler roots. Biomass allocation to roots decreased or did not respond, and other components of root morphology showed only moderate plasticity. Conclusion Our results suggest that morphological and architectural plasticity of the primary root system may well be key features for dehydration avoidance and survival in grass seedlings under moderate drought when allocation of biomass to roots and development of secondary roots are constrained.

To document

Abstract

Anthropogenic impact over the Pasvik River (Arctic Norway) is mainly caused by emissions from runoff from smelter and mine wastes, as well as by domestic sewage from the Russian, Norwegian, and Finnish settlements situated on its catchment area. In this study, sediment samples from sites within the Pasvik River area with different histories of metal input were analyzed for metal contamination and occurrence of metal-resistant bacteria in late spring and summer of 2014. The major differences in microbial and chemical parameters were mostly dependent on local inputs than seasonality. Higher concentrations of metals were generally detected in July rather than May, with inner stations that became particularly enriched in Cr, Ni, Cu, and Zn, but without significant differences. Bacterial resistance to metals, which resulted from viable counts on amended agar plates, was in the order Ni2+>Pb2+>Co2+>Zn2+>Cu2+>Cd2+>Hg2+, with higher values that were generally determined at inner stations. Among a total of 286 bacterial isolates (mainly achieved from Ni- and Pb-amended plates), the 7.2% showed multiresistance at increasing metal concentration (up to 10,000 ppm). Selected multiresistant isolates belonged to the genera Stenotrophomonas, Arthrobacter, and Serratia. Results highlighted that bacteria, rapidly responding to changing conditions, could be considered as true indicators of the harmful effect caused by contaminants on human health and environment and suggested their potential application in bioremediation processes of metal-polluted cold sites.

To document

Abstract

Mediterranean climate areas are home to highly relevant and distinctive agro-ecosystems, where sustainability is threatened by water scarcity and continuous loss of soil organic carbon. In these systems, recycling strategies to close the loop between crop production (and agrorelated industries) and soil conservation are of special interest in the current context of climate change mitigation. Pyrolysis represents a recycling option for the production of energy and biochar, a carbonaceous product with a wide range of environmental and agronomic applications. Considering that biochar functionality depends on both the original biomass and the pyrolysis conditions, we produced and characterized 22 biochars in order to evaluate their potential to sequester C and modify soil physicochemical properties. The pore size distribution was a function of the original biomass and did not change with the temperature of pyrolysis. The highest number of pores within the size 0.2−30 μm, relevant for plant available water retention, was reached at 600 °C. However, ideal pyrolysis conditions to optimize C stability and hydrologic properties was reached at 400 °C in woody derived biochars, as higher temperatures lead to a nontransient hydrophobicity. This study highlights relevant physicochemical properties of locally derived biochars that can be used to tackle specific challenges in Mediterranean agroecosystems.

To document

Abstract

There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.