Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

The Norwegian Institute of Bioeconomy Research (NIBIO) has been working on many fronts to promote sustainable agriculture. As part of the Department of Biogeochemistry and Soil Quality, I will present initiatives and progress made by the NIBIO Institute in promoting soil organic matter persistence and sustainable agriculture in Norway and worldwide. Two major challenges have been targeted with a focus on Norway: waste generation by several industries (e.g., agriculture, forestry, and fishery) and the short time of the cropping season in the country due to climatic constraints. To solve these issues, we are working on several projects focused on re-utilizing waste products by producing organic fertilizers, optimizing these fertilizers (e.g., biochar N-enrichment), and improving current cropping systems with crop diversification. Our main objective is to investigate the benefits of these practices in improving soil quality and crop productivity and enhancing soil organic matter persistence. Our work on soil science also goes beyond Norwegian and Nordic conditions. Among our international collaborations, we are currently working on a multi-institution bilateral project between China and Norway to promote the restoration of a semi-arid ecosystem in Inner Mongolia. We are also often engaging in project proposals for promoting sustainable agriculture in tropical regions. To develop these ideas, we promote a combined approach of spectroscopy techniques in collaboration with other institutions, such as nanoscale secondary ion mass spectrometry (NanoSIMS) in partnership with the Technical University of Munich (TUM) and NMR spectroscopy in partnership with the National Research Council of Italy (CNR-Pisa). Also, our research facilities count on good infrastructure, focusing on incubations with 13C and 15N labeled amendments and 13C pulse labeling.

To document

Abstract

The spatial distribution of organic substrates and microscale soil heterogeneity significantly influence organic matter (OM) persistence as constraints on OM accessibility to microorganisms. However, it is unclear how changes in OM spatial heterogeneity driven by factors such as soil depth affect the relative importance of substrate spatial distribution on OM persistence. This work evaluated the decomposition and persistence of 13C and 15N labeled water-extractable OM inputs over 50 days as either hotspot (i.e., pelleted in 1 – 2 mm-size pieces) or distributed (i.e., added as OM < 0.07 µm suspended in water) forms in topsoil (0-0.2 m) and subsoil (0.8-0.9 m) samples of an Andisol. We observed greater persistence of added C in the subsoil with distributed OM inputs relative to hotspot OM, indicated by a 17% reduction in cumulative mineralization of the added C and a 10% higher conversion to mineral-associated OM. A lower substrate availability potentially reduced mineralization due to OM dispersion throughout the soil. NanoSIMS (nanoscale secondary ion mass spectrometry) analysis identified organo-mineral associations on cross-sectioned aggregate interiors in the subsoil. On the other hand, in the topsoil, we did not observe significant differences in the persistence of OM, suggesting that the large amounts of particulate OM already present in the soil outweighed the influence of added OM spatial distribution. Here, we demonstrated under laboratory conditions that the spatial distribution of fresh OM input alone significantly affected the decomposition and persistence of OM inputs in the subsoil. On the other hand, spatial distribution seems to play a lower role in topsoils rich in particulate OM. The divergence in the influence of OM spatial distribution between the top and subsoil is likely driven by differences in soil mineralogy and OM composition.

To document

Abstract

The molecular diversity of the source substrate has been regarded as a significant controller of the proportion of plant material that is either mineralized or incorporated into soil organic matter (SOM). However, quantitative parameters to express substrate molecular diversity remain elusive. In this research, we fractionated leaves, twigs, bark, and root tissues of 13C-enriched eucalypt seedlings into hot water extractables (HWE), total solvent (acetone) extractables (TSE), a cellulosic fraction (CF), and the acid unhydrolyzable residue (AUR). We used 13C NMR spectroscopy to obtain a molecular diversity index (MDI) based on the relative abundance of carbohydrate, protein, lignin, lipid, and carbonyl functional groups within the biochemical fractions. Subsequently, we obtained artificial plant organs containing fixed proportions (25%) of their respective biochemical fractions to be incubated with soil material obtained from a Haplic Ferralsol for 200-days, under controlled temperature (25 ± 1 ◦C) and moisture adjusted to 70–80% of the soil water holding capacity. Our experimental design was a randomized complete block design, arranged according to a factorial scheme including 4 plant organs, 4 biochemical fractions, and 3 blocks as replicates. During the incubation, we assessed the evolution of CO2 from the microcosms after 1, 2, 3, 4, 7, 10, 13, 21, 28, 38, 45, 70, 80, 92, 112, 148, 178 and 200 days from the start of the incubation. After the incubation, soil subsamples were submitted to a density fractionation to separate the light fraction of SOM (LFOM) i.e., with density <1.8 g cm 3. The heavy fraction remaining was submitted to wetsieving yielding the sand-sized SOM (SSOM) and the mineral-associated SOM (MAOM), with particle-size greater and smaller than 53 μm, respectively. We found that HWE and AUR exhibited comparatively higher MDIs than the TSE and CF. During the incubation, HWE and CF were the primary sources of 13C-CO2 from all plant organs and after 92 days, the respiration of the TSE of bark and roots increased. Otherwise, the AUR contributed the least for the release of 13C-CO2. There were no significant relationships between the MDI and the amount of 13C transferred into the LFOM or SSOM. Otherwise, the transfer of 13C into the MAOM increased as a linear-quadratic function of MDI, which in turn was negatively correlated with the total 13C-CO2 loss. Overall, the MDI exerted a stronger control on the 13C-labeled MAOM than on 13C-CO2 emissions, highlighting the need to improve our ability to distinguish and quantify direct plant inputs from those of microbial origin entering soil C pools.

To document

Abstract

Through their ephemeral reproductive structures (fruiting bodies), ectomycorrhizal forest soil fungi provide a resource for a plethora of organisms. Thus, resolving what biotic and abiotic factors determine the occurrence and abundance of fruiting bodies is fundamental for understanding the dynamics of forest trophic networks. While the influence of abiotic factors such as moisture and temperature on fungal fruiting are relatively well established, little is known about how these processes interact with the evolutionary history of fungal species to determine when, where, and in which abundance fungal fruiting bodies will emerge. A specific knowledge gap relates to whether species' responses to their environment are phylogenetically structured. Here, we ask whether related fungal taxa respond similarly to climatic factors and forest habitat characteristics, and whether such correlated responses will affect the assembly of fungal fruiting communities. To resolve these questions, we fitted joint species distribution models combining data on the species composition and abundance of fungal fruiting bodies, environmental variation, and phylogenetic relationships among fungal taxa. Our results show that both site-level forest characteristics (dominant tree species and forest age) and climatic factors related to phenology (effective heat sum) greatly influence the occurrence and abundance of fruiting bodies. More importantly, while different fungal species responded unequally to their shared environment, there was a strong phylogenetic signal in their responses, so that related fungal species tended to fruit under similar environmental conditions. Thus, not only are fruiting bodies short-lived and patchily distributed, but the availability of similar resources will be further aggregated in time and space. These strong constraints on resource availability for fungus-associated taxa highlight the potential of fungus-based networks as a model system for studies on the ecology and evolution of resource–consumer relations in ephemeral systems of high spatiotemporal patchiness.

To document

Abstract

Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.

To document

Abstract

Fragmentation of isolated populations increases the risk of inbreeding and loss of genetic diversity. The endemic Saimaa ringed seal (Pusa hispida saimensis) is one of the most endangered pinnipeds in the world with a population of only ~ 400 individuals. The current genetic diversity of this subspecies, isolated in Lake Saimaa in Finland for ca. 1000 generations, is alarmingly low. We performed whole-genome sequencing on Saimaa ringed seals (N = 30) and analyzed the level of homozygosity and genetic composition across the individual genomes. Our results show that the Saimaa ringed seal population has a high number of runs of homozygosity (RoH) compared with the neighboring Baltic ringed seal (Pusa hispida botnica) reference population (p < 0.001). There is also a tendency for stillborn seal pups to have more pronounced RoH. Since the population is divided into semi-isolated subpopulations within the Lake Saimaa exposing the population to deleterious genomic effects, our results support augmented gene flow as a genetic conservation action. Based on our results suggesting inbreeding depression in the population, we recommend Pihlajavesi as a potential source and Southern Saimaa as a potential recipient subpopulation for translocating individuals. The Saimaa ringed seal is a recognized subspecies and therefore translocations should be considered only within the lake to avoid an unpredictable risk of disease, the introduction of deleterious alleles, and severe ecological issues for the population.

To document

Abstract

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

To document

Abstract

The Euura amentorum species group is Holarctic, and in Europe it is most species-rich in the North. Their larvae develop entirely within the female catkins of Salix species: some species bore in the central stalk, whereas others live outside this and feed mainly on the developing seeds. Eight Palaearctic species are treated here as valid, and a key to these is provided. Males of five species are known. Two new species are described from northern Europe: Euura pohjola sp. n. and E. ursaminor sp. n. First records of E. itelmena (Malaise, 1931) from the West Palaearctic are presented. We propose seven new synonymies: Pontopristia montana Lindqvist, 1961 (junior secondary homonym in Euura) with Euura freyja (Liston, Taeger & Blank, 2009); Pontopristia brevilabris Malaise, 1921, Amauronematus fennicus Lindqvist, 1944, Pontopristia boreoalpina Lindqvist, 1961, Pontopristia punctulata Lindqvist, 1961, and Amauronematus pyrenaeus Lacourt, 1995 with Euura microphyes (Förster, 1854); and Pteronidea holmgreni Lindqvist, 1968 with Nematus umbratus Thomson, 1871. Lectotypes are designated for: Amauronematus fennicus Lindqvist, 1944, Nematus amentorum Förster, 1854, Nematus suavis Ruthe, 1859, Pontopristia brevilabris Malaise, 1921, Pontopristia itelmena Malaise, 1931, Pontopristia kamtchatica Malaise, 1931, Pontopristia lapponica Malaise, 1921, Pontopristia latiserra Malaise, 1921, Pontopristia romani Malaise, 1921, and Pristiphora amentorum var. nigripleuris Enslin, 1916. Many new host plant associations are recorded.