Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

Abstract

In Norway, it is planned to double the stationary use of bioenergy from all sources by up to 14 TWh before 2020, with much of this increase coming from forest resources, including residues like branches and tops (which are not much used today) being removed after tree harvest. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments have found contrasting results (e.g. Johnson and Curtis 2001; Olsson et al. 1996). Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. The SOM pool is derived from a balance between above- and below-ground input of plant material and decomposition of both plants and SOM. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. To quantify how different harvesting regimes lead to different C addition to soil, and to determine which factors have the greatest effect on decomposition of SOM under different environmental conditions, two Norway spruce forest systems will be investigated in the context of a research project starting in 2008/2009, one in eastern and one in western Norway, representing different climatic and landscape types. At each location, two treatment regimes will be tested: Conventional harvesting, with residues left on-site (CH) Aboveground whole-tree harvest, with branches, needles, and tops removed (WTH). Input of different forest residues will be quantified post harvest. Soil water at 30 cm soil depth will be analysed for nutrients and element fluxes will be estimated to provide information about nutrient leaching. Soil respiration will be measured, along with lab decomposition studies under different temperature and moisture regimes. Long term in situ decomposition studies will be carried out in the WTH plots using three different tree compartments (needles, coarse twigs, fine roots) decomposing in litter bags, in order to determine their limit value. The structure of the fungal community will be determined by soil core sampling and use of molecular techniques allowing qualitative and quantitative estimation. Understorey vegetation will be sampled to determine the biomass, and the frequency of all vascular plants, bryophytes and lichens will be estimated. After harvesting, replanting will be carried out. Seedling survival, causes of mortality and potential damage, growth, and needle nutrients will be monitored. Results from these studies will be used to identify key processes explaining trends observed in two series of ongoing long-term whole-tree thinning trials. We shall combine knowledge obtained using field experiments with results of modelling and data from the Norwegian Monitoring Programme for Forest Damage and National Forest Inventory. This will help us to predict and map the ecologically most suitable areas for increased harvesting of branches and tops on a regional scale based on current knowledge, and to identify uncertainties and additional knowledge needed to improve current predictions.

Abstract

The CO2 uptake of the terrestrial biosphere (Gross Primary Productivity, GPP) plays a key role in the global carbon balance. This carbon flux cannot be determined directly on a global scale. Yet, the remotely sensed Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a valuable proxy for GPP. This study aims at characterizing global FAPAR dynamics on different temporal scales and extracting corresponding spatial structures. The time series were analyzed to uncover the presence and extent of trends, and to identify quasi-oscillatory patterns from intra- to interannual time scales....

Abstract

A catchment provides ecosystem data along with (relatively) simple, operationally defined boundaries. In addition runoff is an integrated measure of the hydrochemical ecosystem response, which can be represented by fluxes at the weir. Integration at the weir occurs first of all with respect to spatial scales. Almost all fluid output leaves a (tight) catchment at this point. Evaluation of the runoff dynamics (quantity and quality) is primarily concerned with temporal scales. The Lange Bramke catchment study with its four runoff series from forested catchments (spring and weir at Lange Bramke, weirs at Dicke Bramke and Steile Bramke) provides an exceptionally comprehensive data set. The following scales and processes can be considered, when interpreting temporal variations in runoff data: above the time scale of forest rotation (species composition, biomass accumulation, timber export, soil nutrient pools) at decadal time scales up to a full forest rotation of about 100-120 years (changes in forest growth rate, changes in deposition, climate change, insect outbreaks) at annual time scales (uptake, transpiration) at hourly to weekly time scales of hydrological events (precipitation, runoff, dilution effects of solvents).

Abstract

In high-latitude areas, landscapes with flat or moderate relief areas usually contain lakes and mires. The identification of flowpaths in such areas is a difficult issue. The increasing availability of high resolution topography from airborne Lidar measurements offers new opportunities for automatic or semi-automatic channel extraction from DEMs in small watersheds, substantially outperforming the hydrographic network in conventional digital maps....