Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Projections by the Intergovernmental Panel on Climate Change (IPCC) and sea ice forecasts suggest that Arctic sea ice will decline markedly in coming decades. Expected effects on the entire ecosystem include a contraction of suitable polar bear habitat into one or few refugia. Such large-scale habitat decline and fragmentation could lead to reduced genetic diversity. Here we compare genetic variability of four vagrant polar bears that reached Iceland with that in recognized subpopulations from across the range, examining 23 autosomal microsatellites, mitochondrial control region sequences and Y-chromosomal markers. The vagrants' genotypes grouped with different genetic clusters and showed similar genetic variability at autosomal microsatellites (expected heterozygosity, allelic richness, and individual heterozygosity) as individuals in recognized subpopulations. Each vagrant carried a different mitochondrial haplotype. A likely route for polar bears to reach Iceland is via Fram Strait, a major gateway for the physical exportation of sea ice from the Arctic basin. Vagrant polar bears on Iceland likely originated from more than one recognized subpopulation, and may have been caught in sea ice export during long-distance movements to the East Greenland area. Although their potentially diverse geographic origins might suggest that these vagrants encompass much higher genetic variability than vagrants or dispersers in other regions, the four Icelandic vagrants encompassed similar genetic variability as any four randomly picked individuals from a single subpopulation or from the entire sample. We suggest that this is a consequence of the low overall genetic variability and weak range-wide genetic structuring of polar bears – few dispersers can represent a large portion of the species' gene pool. As predicted by theory and our demographic simulations, continued gene flow will be necessary to counteract loss of genetic variability in increasingly fragmented Arctic habitats. Similar considerations will be important in the management of other taxa that utilize sea ice habitats.

To document

Abstract

Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products.

Abstract

This study examined the P fertilization effects of 11 sewage sludges obtained from sewage treated with Al and/or Fe salts to remove P by a pot experiment with ryegrass (Lolium multiflorum) and a nutrient-deficient sand−peat mixture. Also it investigated whether fertilization effects could be predicted by chemical sludge characteristics and/or by P extraction. The mineral fertilizer equivalent (MFE) value varied significantly but was low for all sludges. MFE was best predicted by a negative correlation with ox-Al and ox-Fe in sludge, or by a positive correlation with P extracted with 2% citric acid. Ox-Al had a greater negative impact on MFE than ox-Fe, indicating that Fe salts are preferable as a coagulant when aiming to increase the plant availability of P in sludge. The results also indicate that sludge liming after chemical wastewater treatment with Al and/or Fe salts increases the P fertilization effect.