Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

The outcome of a compatible mycorrhizal interaction is different from that in a compatible plant–pathogen interaction; however, it is not clear what mechanisms are used to evade or suppress the host defence. The aim of this work is to reveal differences between the interaction of Norway spruce roots to the pathogen Ceratocystis polonica and the ectomycorrhizal Laccaria bicolor, examine if L. bicolor is able to evade inducing host defence responses typically induced by pathogens, and test if prior inoculation with the ectomycorrhizal fungus affects the outcome of a later challenge with the pathogen. The pathogen was able to invade the roots and caused extensive necrosis, leading to seedling death, with or without prior inoculation with L. bicolor. The ectomycorrhizal L. bicolor colonised primary roots of the Norway spruce seedlings by partly covering, displacing and convoluting the cells of the outer root cortex, leaving the seedlings healthy. We detected increased total peroxidase activity, and staining indicating increased lignification in roots as a response to C. polonica. In L. bicolor inoculated roots there was no increase in total peroxidase activity, but an additional highly acidic peroxidase isoform appeared that was not present in healthy roots, or in roots invaded by the pathogen. Increased protease activity was detected in roots colonised by C. polonica, but little protease activity was detected in L. bicolor inoculated roots. These results suggest that the pathogen efficiently invades the roots despite the induced host defence responses, while L. bicolor suppresses or evades inducing such host responses in this experimental system.

To document

Abstract

Norway spruce (Picea abies) bark contains specialized phloem parenchyma cells that swell and change their contents upon attack by the bark beetle Ips typographus and its microbial associate, the blue stain fungus Ceratocystis polonica. These cells exhibit bright autofluorescence after treatment with standard aldehyde fixatives, and so have been postulated to contain phenolic compounds. Laser microdissection of spruce bark sections combined with cryogenic NMR spectroscopy demonstrated significantly higher concentrations of the stilbene glucoside astringin in phloem parenchyma cells than in adjacent sieve cells. After infection by C. polonica, the flavonoid (+)-catechin also appeared in phloem parenchyma cells and there was a decrease in astringin content compared to cells from uninfected trees. Analysis of whole-bark extracts confirmed the results obtained from the cell extracts and revealed a significant increase in dimeric stilbene glucosides, both astringin and isorhapontin derivatives (piceasides A to H), in fungus-infected versus uninfected bark that might explain the reduction in stilbene monomers. Phloem parenchyma cells thus appear to be a principal site of phenolic accumulation in spruce bark.

Abstract

Heterobasidion parviporum, a common pathogenic white-rot fungus in managed Norway spruce forests in northern and central Europe, causes extensive decay columns within stem heartwood of the host tree. Infected trees combat the lateral spread of decay by bordering the heartwood with a fungistatic reaction zone characterized by elevated pH and phenol content. To examine the mode of fungal feeding in the reaction zone of mature Norway spruce trees naturally infected by H. parviporum, we conducted spatial proWling of pectin and hemicellulose composition, and established transcript levels of candidate fungal genes encoding enzymes involved in degradation of the diVerent cell wall components of wood. Colonized inner heartwood showed pectin and hemicellulose concentrations similar to those of healthy heartwood, whereas the carbohydrate proWles of compromised reaction zone, irrespective of the age of fungal activity in the tissue, indicated selective fungal utilization of galacturonic acid, arabinose, xylose and mannose. These data show that the rate of wood decay in the reaction zone is slow. While the up-regulation of genes encoding pectinases and hemicellulases preceded that of the endoglucanase gene during an early phase of fungal interaction with xylem defense, the manganese peroxidase gene showed similar transcript levels during diVerent phases of wood colonization. It seems plausible that the reaction zone components of Norway spruce interfere with both lignin degradation and the associated co-hydrolysis of hemicelluloses and pectin, resulting in a prolonged phase of selective decay.

To document

Abstract

Conifer needles are extraordinarily variable and much of this diversity is linked to the water transport capacity of the xylem and to xylem conduit properties. However, we still know little about how anatomical characteristics influence the hydraulic efficiency of needle xylem in different parts of the crown. In this study we evaluated needle function and anatomy in Norway spruce families exposed to different light conditions. We measured tracheid and needle characteristics of sun-exposed and shaded current-year needles in two experimental plots: a control plot and a thinned plot with 50% reduction in stand density. Sun-exposed needles had a larger tracheid lumen area than shaded needles, and this was caused by a larger maximum tracheid lumen diameter, while the minimum lumen diameter was less plastic. Sun-exposed needles had also higher theoretical hydraulic conductivity than shaded needles. Thinning leads to increased radiation to the lower branches, and presumably exposes the upper branches to stronger water stress than before thinning. Thinning affected several needle parameters both in sun-exposed and shaded needles; tracheid lumens were more circular and minimum tracheid lumen diameter was larger in the thinned plot, whereas maximum tracheid lumen diameter was less plastic on both plots. This study demonstrates that needle xylem structure in Norway spruce is clearly influenced by the light gradient within the tree crown.

Abstract

Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum. In the pathogen-compromised reaction zone, upregulation of an oxaloacetase gene generating oxalic acid coincided with oxalate and cation accumulation and presence of calcium oxalate crystals. The colonized inner heartwood showed trace amounts of oxalate. Moreover, fungal exposure to the reaction zone under laboratory conditions induced oxaloacetase and oxalate accumulation, whereas heartwood induced a decarboxylase gene involved in degradation of oxalate. The excess level of cations in defense xylem inactivates pathogen-secreted oxalate through precipitation and, presumably, only after cation neutralization can oxalic acid participate in lignocellulose degradation. This necessitates enhanced production of oxalic acid by H. parviporum. This study is the first to determine the true influence of white-rot fungi on oxalate crystal formation in tree xylem.

Abstract

In 2008, an epidemic caused by a new Neonectria sp. was discovered on white fir (Abies concolor) in several counties in southern Norway [1]. Later the pathogen was also found on other fir species in Norway and Denmark [2]. Typical symptoms and signs were dead shoots, flagging (dead branches), canker wounds, heavy resin flow, and occasionally red fruiting bodies (perithecia). Pathogenicity tests on several Abies spp. proved the fungus to be very aggressive, which corresponds well with observations of mortality of white fir and subalpine fir (A. lasiocarpa) from different age classes under field conditions. Sequencing of the internal transcribed regions (ITS) of the ribosomal DNA showed that this Neonectria sp. was most similar to N. ditissima (only 5 bp different from isolates in the GenBank), a common pathogen worldwide on broad leaf trees. The ITS sequences were very different (> 20 bp) from N. fuckeliana, a well-known fungus on Norway spruce in Scandinavia and other parts of the world, especially in the northern hemisphere. In 2011, the new Neonectria species was found on diseased trees in a Danish nordmann fir (Abies nordmanniana) seed orchard. Resin flow was seen from mature cones, and tests revealed that the seeds were infected by the Neonectria sp.