Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2003

Abstract

We studied four south-facing and three north-facing boreal spruce forest stands (ca. 0.1ha each) in SE Norway with the aim of testing the hypothesis that former logging has long-term effects on boreal forest-floor vegetation. The stand series comprised unlogged natural forests and forests that were selectively or clear cut 6070 years prior to our study. Each stand was described with respect to history of forestry impact and tree-stand structure.Environmental, species number, species abundance and species composition (vegetation gradients obtained as ordination axes) variables obtained for 25 m1m plots in each stand were tested for among-stand differences. Significant among-stand differences were found, partly related to former forest management and partly due to among-stand differences in topography.Differences among stands related to management were found for tree stand density, highest in managed stands, and for Dryopteris expansa agg. and Luzula pilosa abundances, peaking in formerly clear-cut stands. Species number (at plot or stand scales) was weakly related to former management.On southerly as well as northerly aspects, gradients in species composition were found that separated plots according to former management. Differences among stand conditioned on topography resulted in opposite patterns in the two series of stands because among southerly stands the clear cut was the least while among northerly the clear cut was the most strongly sloping. Low-inclination sites tended more strongly to be paludified and to have high Sphagnum cover, and to have low abundance of specific microsites with small mosses and hepatics. Vegetation gradients related to soil moisture and microtopography were found for both aspects.A strong gradient in species composition related to tree influence at within-stand scales was found, with variation in species number. Existence of such a gradient should provide for significant biotic effects (of short or long duration) of the environmental changes that take place during forest re-growth: (1) the immediate creation of small or large tree-layer gaps by tree felling; and (2) the closing of the tree layer during the regeneration phase.Most notably, the phases at which the tree layer reaches minimum and maximum cover, respectively, may act as `bottlenecks\" for survival of forest-floor species. We conclude that forestry impacts understorey vegetation by way of changes in tree-layer structure and, to a lesser extent, substrate availability and the local environment, during forest regrowth. The extent and duration of this impact will depend on a complex set of factors.Our results are consistent with the view that if maintenance of species diversity is aimed at, environmental considerations should be built into forest management practices, preferably by mimicking the natural structural dynamics of the tree layer.

Abstract

Sulphur deposition is high at all IMPACTS sites and exceed maximum levels observed in Europe and North-America. Dry deposition equals or exceeds wet deposition. The IMPACTS data, in particular those from the remote Lei Gong Shan site clearly document long-range transport of air pollutants. Due to the actual and future energy combustion and emission strategy in China, the long-range transport of air pollutants may significantly increase with subsequent increased environmental damage in rural and remote areas in China. In addition to sulphur deposition, depositions of reactive nitrogen (nitric acid and ammonia) and calcium are also important and clearly demonstrate that pH alone is not a good indicator for acid deposition. High concentrations of ground level ozone, above critical levels for vegetation and forest, are observed at the Liu Xi He site in Guangdong province. Soil acidification gives rise to high concentrations of toxic aluminium in soil water at several sites. At the Tie Shan Ping site in Chongqing aluminium occurs at a level where long-term harmful effects on trees might be expected. Defoliation and mortality have been severe, however, fairly stable. Insect attacks are apparently a major cause, but enhanced insect attacks might be an indirect effect of health weakening due to acidification. Defoliation has been considerable also in Liu Chong Guan in Guiyang, while the three other catchments had minor defoliation only. High foliar nitrogen concentrations are seen in Lei Gong Shan in Guizhou and Cai Jia Tang in Hunan, accompanied by low P/N-ratios. Statistical tests of vegetation change, so far only implemented in Liu Chong Guan, revealed minor changes in number and abundances of vascular plants, but a significant decline in number of bryophytes. This decline is probably related to climatic year-to-year variations. Data from other catchments and longer time periods are needed to identify vegetation changes related to soil acidification or direct effects of air pollutants. Modelling results from Tie Shan Ping suggest that the currently planned 20% reduction in sulphur emissions is far from sufficient to avoid further acidification. As more data are generated, dose-response relationships, critical load estimates and model predictions will obviously be improved.

2002

Abstract

Additive variation in adaptive traits is a prerequisite for selection and adaptation to future environmental changes, but distribution of adaptive genetic variability between and within populations is poorly known in most forest trees. Owing to this deficiency, life history traits such as geographic range, pollination vector and seed dispersal capability, which significantly affect gene flow and thus the distribution of genetic variability, were used to evaluate the genetic resources in 23 Norwegian native forest tree species. Based on the combination of life history traits the species\" genetic resources were classified either as viable, potentially vulnerable or vulnerable, assuming a decrease in within-population variability in this sequence. Twelve widely distributed species with generally effective dispersal of pollen and seeds were considered viable (Pinus sylvestris, Picea abies, Juniperus communis, Betula pubescens, B. pendula, Alnus incana, A. glutinosa, Salix caprea, Populus tremula, Corylus avellana, Sorbus aucuparia, Prunus padus) and have as such no particular conservation needs. Effective seed dispersal of these species, as inferred from post-glacial migration rates, may be partly responsible for their generally early post-glacial appearance, and may, in combination with the wide ranges and relatively large evolutionary potential, indicate that viable species are best able to cope with climatic change. Among species with restricted ranges and more limited gene flow eight were considered potentially vulnerable (Quercus petraea, Q. robur, Fraxinus excelsior, Acer platanoides, Taxus baccata, Ilex aquifolium, Fagus sylvatica, Ulmus glabra) and three were considered vulnerable (Tilia cordata, Malus sylvestris, P. avium). Application of different intensities of a multiple population breeding system (MPBS) is considered the most appropriate mode of conserving genetic resources in these species.