Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2013

To document

Abstract

Fruit-set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit-set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post-pollinated and un-pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole-3-acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit-set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit-set mechanisms in C. annuum.

Abstract

Use of genetic materials with a more “southern growth rhythm” has been suggested as one of the measures for adapting our forests to climate change. However, studies on Norway spruce (Picea abies (L.) Karst) provenances and families have shown a possible relationship between phenology (apical growth rhythm) and cambial growth rhythm that might have negative effects on latewood proportion and wood density. We made a detailed study of the xylem formation of four clones during one growth season. The clones were known to express contrasting phenology in terms of timing of bud flush equivalent to two weeks when assessed in 1997. Micro cores from four 20 year old ramets of the four clones, 16 trees in total, were sampled once a week from May to October in 2010. When bud flush were assessed in 2010 there were about one week difference between the most contrasting clones. Temperatures during the spring 2010 were low and flushing started in general late. No relationship was found between the clonal values for timing of bud flush and initiation of xylem formation. Large differences between clones in numbers of formed tracheids were found in later phases of the growing season. Both the rate of cell division and number of formed tracheids varied significantly between clones. Only small differences in latewood percentage were found between the clones. Genetic variation in xylem formation was found, but from this study the genetic variation in xylem formation seems to be independent from the genetic variation in phenology.