Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Abstract
Scots pine (Pinus sylvestris) sapwood is per definition (EN-350-2) easy to treat. Combination with its good availability on the European markets, it is a construction and building material in demand. However, partially large differences in penetration are reported from industry and research. To keep a reliable product quality, impregnation processes aligned to the material most difficult to treat. Hence, it is crucial to know about the factors inhibiting the fluid flow into the material. Scots pine samples from a wide geographic distribution, 25 different sites in 6 different countries, have been collected and impregnated with an aqueous monomer furfuryl alcohol solution. From each of the respective sites logs of 1.3 meter in length were collected from nine trees belonging to three different breast height diameter classes. Three trees from each dominance class were chosen randomly. The log was drawn from the felled stem in a height of 1.2 meters with exact marked north/south exposition. Sapwood slabs orientated in the heaven directions, underwent a drying procedure at 40°C for 48 h and small clear samples of 20 x 20 x 50 mm were prepared. A large variation of the ratio of filling was found for the material tested. Diameter as well as sample origin seem to influence the materials permeability.
Abstract
Scots pine (Pinus sylvestris) and especially its heartwood is one of the most common construction materials for general outer use e.g. windows or facades in northern Europe. It is considered being use class 3 and is according to EN 350-2 \"not treatable\". Reports from industry and researchers indicate that the heartwood treatability is not uniform. It is still unclear what causes these differences. To increase its durability by means of impregnation would be a contribution to extend the use of both a natural and native material. The understanding of a potential pattern analog to latitudinal/longitudinal origin or other forest or wood properties could help to improve the impregnation by better material selection. Scots pine samples from 25 different sites in 6 countries in northern Europe have been collected throughout autumn and winter 2009/2010. A circle of varying size containing approximately 30 trees was set up in a representative site of each stand. All diameters were measured and arranged in three classes. Three trees of each class were chosen randomly. Only the middle and upper diameter classes were used for studying heartwood permeability. The small diameter class had insufficient heartwood width to be processed. Samples of 20 x 20 x 50 mm were cut and conditioned in a climate chamber. The samples were impregnated with a water-soluble monomer furfuryl alcohol solution in a standard pressure/vacuum process. Results showed a generally low permeability but a few samples had an unexpected high ration of filling. Further on, the samples with the highest and lowest treatability will undergo anatomical and chemical tests to explain these properties.
Abstract
Modification of wood with furfuryl alcohol or furfuryl alcohol prepolymer leads to a wood product with increased decay resistance, hardness and dimensional stability. In normal application, i.e. under Use Class 3 conditions, furfurylated wood can be regarded as non-toxic. This has earlier been demonstrated by toxic hazard tests on water leachates using relevant leaching procedures, e.g. the OECD Guideline 313 or the Dutch shower test procedure. These leachates showed slight to no toxicity towards standard aquatic test organisms. However, when using forced leaching procedures with limited amount of water such as the EN 84 procedure, slight to moderate toxicity to the same test organisms was observed, depending on furfurylation process. Furthermore, earlier studies have shown that leachates from wood treated with furfuryl alcohol pre-polymers have higher toxicity to Vibrio fischeri (luminescent marine bacterium) than leachates from wood treated with furfuryl alcohol monomers and that this probably is attributed to differences in leaching of chemical compounds. The ambition of the present study, was to investigate which chemical compounds in the leachates causes toxicity to the aquatic organisms V. fischeri and Daphnia magna (water flea). In this study five different wood species, both hardwoods and softwoods, treated with three different furfurylation processes, were leached according to two different leaching methods. The study shows that this difference in toxicity of leachates towards V. fischeri most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol or 2-furoic acid. However, the difference in toxicity might be caused by the substance 2,5-furandimethanol. Leachates from furfurylated wood still need to be investigated further in order to identify the chemical differences between wood furfurylated with furfuryl alcohol monomers and furfuryl alcohol prepolymer causing differences in toxicity to different organisms.
Abstract
Measurements of heat production rate have been made on wood samples with the brown rot fungus Postia placenta at different moisture contents. The results clearly indicate that the heat production rate (a measure of respiration rate and activity) is moisture dependent. When the moisture content is decreased, less heat is produced, and when the moisture content is increased, more heat is produced. Isothermal calorimetry seems to be a measurement technique well suited to the study of rot fungal activity as a function of temperature and moisture content.
Abstract
Wood protection is mainly based on chemical protection of wood. The disposal of wood preservative treated material causes restrictions in its later use or recirculation into the eco-cycle. A new protective system, electro-osmotic pulsing technology on wood, called PLEOT, is tested in a fungi test and in soil contact. Mass loss and moisture content of Scots pine sapwood samples was calculated after testing and an element analysis was performed on the sample powder. The results show that PLEOT- protected samples have nearly no mass loss after 4, 8 and 12 weeks of exposure to Coniophora puteana in laboratory trials. The samples protected with PLEOT showed lower moisture content but trace elements of metals in the samples after basidiomycete test compared to untreated samples. It is concluded, that neither the resulted wood moisture content nor the transferred metal ions in the PLEOT samples contribute to large amounts to the wood protection effect. Furthermore, the PLEOT system might give a protection for wood in soil contact. Further research on the mode of action as well as further tests including field tests are under planning.
Abstract
Microbial disfigurement of coated wooden surfaces is considered a major maintenance concern and will shorten the aesthetic service life of wooden facades. The effect of the physical surface structure of a paint film when applied on wood may have an impact on the susceptibility to mould growth. Six model paints were formulated to give the following physical surface structures: glossy, matt, soft, hard, hydrophobic, and a film with air inclusion. The model paints and a standard paint, with and without fungicide, were applied on panels of Norway spruce (Picea abies L Karst.) and exposed outdoors for nearly three years according to a modified version of EN 927-3. A logistic regression model was fit to the data, and the degree of mould growth varied with exposure time and type of paint. Hard model paint was significantly more susceptible than the other model paints and had a performance close to the standard paint without fungicide. Soft model paint provided the best performance, with the least mould growth. Temperature, relative humidity, and precipitation did not significantly contribute to the model. (C) 2010 Elsevier Ltd. All rights reserved.
Abstract
Scots pine (Pinus sylvestris) sapwood was investigated for variation in treatability using the wood modifying agent, furfuryl alcohol (FA) in water. The variation in treatability within trees, between trees and between different stands of Scots pine was studied. Investigated variables that reduced the residual variance significantly were: site location, latitude of site, height of trees, annual ring width, vertical and horizontal position in the tree and method of drying. Linear mixed model statistics were used and tree number was handled as a random variable. The best model reduced the treatability residual variance by 67%. Location was the single factor affecting treatability most. Differences in latitude between locations may be the reason for that. Latitude correlated negatively with the treatability. Within the trees, the treatability of sapwood increased with distance from ground and with distance from heartwood border. A small, but significantly better treatability was found for kiln dried wood (60A degrees C) compared to air dried wood (20A degrees C).
Abstract
The furfurylation process is an extensively investigated wood modification process. Furfuryl alcohol molecules penetrate into the wood cell wall and polymerize in situ. This results in a permanent swelling of the wood cell walls. It is unclear whether or not chemical bonds exist between the furfuryl alcohol polymer and the wood. In the present study, five different wood species were used, both hardwoods and softwoods. They were treated with three different furfurylation procedures and leached according to three different leaching methods. The present study shows that, in general, the leachates from furfurylated wood have low toxicity. It also shows that the choice of leaching method is decisive for the outcome of the toxicity results. Earlier studies have shown that leachates from wood treated with furfuryl alcohol prepolymers have higher toxicity to Vibrio fischeri than leachates from wood treated with furfuryl alcohol monomers. This is probably attributable to differences in leaching of chemical compounds. The present study shows that this difference in the toxicity most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol, or 2-furoic acid. However, the difference might be caused by the two substances 5-hydroxymethylfurfural and 2,5-furandimethanol. The present study found no difference in the amount of leached furfuryl alcohol between leachates from furfurylated softwood and furfurylated hardwood species. Earlier studies have indicated differences in grafting of furfuryl alcohol to lignin. However, nothing was found in the present study that could support this. The leachates of furfurylated wood still need to be investigated further to identify the chemical differences between wood furfurylated with furfuryl alcohol monomers and furfuryl alcohol prepolymers.
Authors
Eirik NordhagenAbstract
No abstract has been registered
Abstract
Traditional wood preservatives based on biocides are effective against wood-deteriorating organisms because of their toxicity. By contrast, modified woods are non-toxic by definition. To investigate the efficiency of various wood modifications, quantitative real-time polymerase chain reaction (qPCR) was used to profile the DNA amounts of the white-rot fungus Trametes versicolor (L.) [Lloyd strain CTB 863 A] during an 8-week-long growth period in treated Pinus sylvestris (L.) sapwood. The studied wood was modified by acetylation, furfurylation, and thermal treatment. The traditional wood preservatives bis-(N-cyclohexyldiazeniumdioxy)-copper (Cu-HDO) and chromated copper arsenate (CCA) were used as references, whereas untreated P. sylvestris (L.) sapwood served as a control. The maximum levels of fungal DNA in native wood occurred at the end of the experiment. For all wood treatments, the maximum fungal DNA level was recorded after an incubation period of 2 weeks, followed by a decline until the end of the trial. For the preservative-treated woods, Cu-HDO showed the lowest level of fungal DNA throughout the experiment, indicating that exploratory hyphal growth is limited owing to the phytotoxicity of the treatment. The other treatments did not inhibit the exploratory hyphal growth phase. We conclude that qPCR studies of hyphal growth patterns within wood should provide a powerful tool for evaluating and further optimizing new wood protection systems.