Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Abstract

The utilization history of the Lange Bramke catchment and the northern Harz mountains is dominated by ore mining. Historical documents were used to provide ample evidence that forestry and water utilization were managed according to administrative goals in a largely centralized manner. However, the perception of the landscape and its function and purpose have changed significantly over the centuries. In particular, the distinction between renewable (such as forests) and non-renewable resources (such as ore deposits) is a rather modern one, as is the principle of sustainability. This change in perception is apparent from the type of maps used, the different conflicts on property and exploitation rights, and the request for quantitative inventories of resources, appearing only quite late in the mining history. The remnants of smelters and charcoal production still demonstrate the importance of historical land use for proper interpretation of monitoring data.

Abstract

The Lange Bramke catchment has been investigated as a monitored catchment for 60 years. However, its utilization history even dates back to medieval times, and is well documented in part. The intense interplay between ore mining, forestry, and water resources exploitation left remains such as scoriae piles and modified forest growth, e.g. due to local pollution at smelter locations. It is demonstrated that considering local land use history is important for a proper understanding and interpretation of modern monitoring data. A theoretical framework is proposed for the integration of the two data sources. This requires a joint approach combining two modelling paradigms, the functional one dominating in current ecosystem research, and an interactive one which best characterizes the human–environment relationship in historic times.

Abstract

Climate change has been observed to be related to the increase of forest insect damages in the boreal zone. The prediction of the changes in the distribution of insect-caused forest damages has become a topical issue in the field of forest research. The common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini caused severe growth losses and tree mortality of Scots pine (Pinus sylvestris L.) (Pinaceae). Logistic regression is commonly used in modelling the probability of occurrence of an event. In this study the logistic regression was investigated for predicting the needle loss of individual Scots pines (pine) using the features derived from airborne laser scanning (ALS) data. The defoliation level of 164 trees was determined subjectively in the field. Statistical ALS features were extracted for single trees and used as independent variables in logistic regression models. Classification accuracy of defoliation was 87.8% as respective kappa-value was 0.82. For comparison, only penetration features were selected and classification accuracy of 78.0% was achieved (kappa=0.56). Based on the results, it is concluded that ALS based prediction of needle losses is capable to provide accurate estimates for individual trees.

Abstract

Le gel printanier peut etre dommageable pour les semis de Picea abies (L.) Karst. nouvellement plantes si leur rythme de croissance n'est pas suffisamment adapte aux conditions climatiques de la station forestiere. Les objectifs de cette etude consistaient a determiner de quelle facon le debourrement et la resistance au gel printanier sont influences par un traitement de jours courts (JC) appliques a differents moments et avec differents regimes de temperature durant la periode de formation des bourgeons. A la suite d'un entreposage hivernal, la resistance au gel a ete evaluee apres une, trois et cinq semaines dans des conditions de forcage. Le traitement JC a avance le debourrement comparativement aux semis temoins. Par comparaison, le moment du traitement et les differentes temperatures ont eu peu d'effet sur le debourrement. Le traitement JC a augmente la resistance au gel des aiguilles d'un an pendant la periode de desendurcissement. Applique tot, le traitement JC a augmente la resistance au gel des aiguilles d'un an et le diametre au collet comparativement a une application plus tardive. Il est important que la periode de noirceur atteigne une duree critique lorsque le traitement JC prend fin pour eviter une deuxieme eclosion des bourgeons. Des temperatures basses a la suite du traitement JC ont augmente la resistance au gel des aiguilles et diminue celle de la tige. Les effets contraires de la temperature sur differents tissus vegetaux demontrent l'importance d'examiner differents tissus apres des essais de gel-degel. Spring frost may result in detrimental damage in newly planted Picea abies (L.) Karst. seedlings if their growth rhythm is not sufficiently adapted to the climatic conditions on the forest site. The aims of this study were to evaluate how bud break and spring frost hardiness were influenced by short-day (SD) treatments with different timing and different temperature regimes during bud formation. Following winter storage, frost hardiness was tested after 1, 3 and 5 weeks in forcing conditions. The SD treatment advanced bud break compared with the control seedlings. In comparison, the effects of timing and the different temperatures on bud break were small. The SD treatment improved frost hardiness in first-year needles during dehardening. The early SD treatment resulted in improved frost hardiness in first-year needles and greater root collar diameter compared with later SD treatment. To avoid a second bud flush, it is important that a critical night length is attained when the SD treatment terminates. Low temperatures following the SD treatment resulted in increased hardiness of the needles and decreased hardiness of the stems. The contrasting effect of temperature in different plant tissues demonstrates the importance of examining different tissues following freezing tests.

Abstract

There is an increasing need for forest resource monitoring methods, as more attention is paid to deforestation, bio-energy and forests as habitats. Most national forest inventories are based on networks of field inventory plots, sometimes together with satellite data, and airborne laser scanning (ALS) is increasingly used for local forest mapping. These methods are expensive to establish or carry out, and many countries, including some severely affected by deforestation, do not apply such methods.Satellite based remote sensing methods in use today are hampered by problems caused by clouds and saturation at moderate biomass levels. Satellite SAR is not hampered by cloud problems, and monitoring of canopy surface elevation, which is correlated to key forest resource variables, might be a future method in forest monitoring.We here present the main findings of three studies (Solberg et al. 2010, a, b, c) investigating the potential of interferometric SAR (InSAR) for forest monitoring, by describing the relationship between InSAR height above ground and key forest variables. We based this study on InSAR data from the Shuttle Radar Topographic Mission (SRTM) with its acquisition in February 2000. We obtained SRTM InSAR DEM data from DLR for two forest areas in Norway, and built a ground-truth from the combination of field inventory and ALS.The forest areas were dominated by Norway spruce and Scots pine. In each forest area we laid out a number of field inventory plots, where we recorded standard forest variables such as Dbh and tree height, and from this derived plot aggregated variables of top height, mean height, stand density (mean tree height divided by the mean tree spacing), volume and biomass. We used this to calibrate and validate ALS based models, from which we derived estimates of the same variables for each SRTM pixel. This served as reference data for the SRTM data.From the X-band SRTM digital surface model (DSM) image we subtracted a high quality digital terrain model (DTM) derived from the ALS data. This was based on an extraction of ground echoes from the data provider, and the elevations of these echoes were interpolated into a grid fitting the SRTM grid.This produced data on the RADAR echo height above ground (InSAR height), which we related to the forest variables. With digital stand maps we aggregated the variables to the stand level. The X-band microwaves penetrate a little into the canopy, and the InSAR height was on average about 1.2 m below the mean tree height. InSAR height was strongly related to all forest variables, most strongly to top height.Particularly valuable was that stem volume and biomass, ranging up to 400 m3/ha and 200 t/ha, respectively, were linearly related to InSAR height with an accuracy, RMSE, of 19% at the stand level. However, these relationships had an intercept, which represents the microwave penetration into the vegetation, and due to this the relationships were non-linear for forest stands having heights and biomass values close to zero.With a lower quality DTM derived from topographic maps, the relationships were weaker. However, as long as a forest variable is within the ranges of the linear relationship, any change in InSAR elevation would be proportional to a change in forest height, volume or biomass. And, any logging should be detectable as a sudden decrease in InSAR elevation.Hence, a forest monitoring based on X-band InSAR might be suitable even without a DTM. An application of space borne InSAR for forest monitoring would be feasible for large areas at low cost, whereas an ALS acquisition for a part of the area would serve as reference data for calibration.

Abstract

The semi-individual tree crown approach (semi-ITC) was used to predict crown base heights (CBH) on the level of single crown segments based on airborne laser scanning (ALS) derived metrics. The root-mean-squared-differences (RMSD) on the segment level were smallest for spruce. However, they were larger than the standard deviation of the measured CBH for pine and birch. The RMSD values were also larger compared to other studies. This can in part be explained by the fact that the semi-ITC approach incorporates errors of the segmentation algorithm. As a consequence, all instead of only correctly identified trees were considered in modeling which results in more realistic RMSD values. After aggregating the individual segment predictions to the plot level, the RMSD values were smaller than the standard deviations of the field measurements and comparable to other studies. The relative RMSD values for birch, spruce, pine and all species were 51.61, 35.22, 49.28, and 13.89%, respectively.

Abstract

Today the spruce bark beetle Ips typographus is always univoltine in Northern Europe including Norway and completes development from egg to adult between May and August. Further south in Europe, development is bivoltine with the completion of two generations in most years. A temperature-driven developmental model suggests that by 2070-2100 the voltinism of I. typographus will change dramatically in Norway. If summers become only 2.5°C warmer than today bivoltinism can be expected every single year in the major spruce growing areas in S-Norway. This is likely to have dramatic effects on forestry since two generations per year will give two, instead of one, attack periods each summer. In addition to increasing the number of attacked trees the effect of the attacks may also be more severe, as Norway spruce is more susceptible to beetle attacks later in the summer. However, climate change will probably also change the phenology of Norway spruce and thus its susceptibility to attack by I. typographus and its phytopathogenic fungal associates. We are currently modelling how tree resistance varies with temperature and tree phenology in order to provide more well-founded advice to forest managers on the interaction between bark beetles and tree in a future climate.