Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2017
Authors
Signe Kynding Borgen Gry Alfredsen Johannes Breidenbach Lise Dalsgaard Gunnhild Søgaard Aaron SmithAbstract
No abstract has been registered
2016
Authors
Signe Kynding Borgen Gry Alfredsen Johannes Breidenbach Lise Dalsgaard Gunnhild Søgaard Aaron SmithAbstract
No abstract has been registered
2014
Authors
Aksel GranhusAbstract
No abstract has been registered
Authors
Kjersti Holt HanssenAbstract
No abstract has been registered
Abstract
No abstract has been registered
2013
Abstract
Over the past 40 years, a new multidisciplinary field of study has emerged which is characterised by at least two major changes in the way some scientists treat systems. First, it is increasingly accepted that we cannot fully understand the laws that govern a system simply by studying its parts, nor can we fully understand the behaviour of the parts without placing them in the context of the larger system in which they are embedded. This realization, which has arisen as we face the limits of reductionist science, has given rise to the development of new models and methods that facilitate the study of systems across multiple scales of organization. Second, the notions of equilibrium and predictability in natural systems, developed in the 19th Century and continuously pursued until far into the 20th Century, are being rejected in favour of models that embrace variability, diversity, continual change and adaptation as the status quo. Traditional analytical models that assume a stable equilibrium are being replaced by new approaches that facilitate the exploration of a system’s natural range of variation and its possible emergent responses to changing external conditions. The implications of this new field, now known as complexity science, are manifest across disciplines, fundamentally changing the way we study, analyze and perceive natural systems. We provide an overview of complexity science in the context of forest management.
2010
Abstract
The aim of this study is to use airborne laser scanning (ALS) data to simulate synthetic aperture radar interferometry (InSAR) elevation data [digital elevation model (DEM)] from the spatial distribution of scatterers. A Shuttle Radar Topography Mission X-band DEM data set and an ALS data set from a spruce-dominated forest area are used. A 3-D grid of voxels is made from the spatial distribution of ALS first echoes. The slant angle penetration rate of the SAR microwaves (P-SAR) is simulated to be a function of the vertical ALS penetration rate (P-ALS), i.e., P-SAR = P-ALS(4). The InSAR DEM and heights above the ground are fairly well reproduced by the simulator. A total least squares regression model between the simulated and measured InSAR DEMs has an R-2 value of 0.99 and a slope of 1 : 1. By subtracting the ALS-based terrain heights (digital terrain model), we obtained InSAR heights, which were reproduced with an R-2 value of 0.78, a slope of 0.96, and a root-mean-square error of 2.3 m. With the simulator, it was demonstrated how a disturbance event would affect the InSAR height. Unfortunately, the relationship was curvilinear and concave, which means that the method is not very sensitive to weak disturbances. This might be partly overcome by using a more vertical incidence angle of the SAR microwaves. The simulator might be used for validation or ground truthing of the InSAR data, as well as gaining understanding of how vegetation changes affect the InSAR data.
2006
Abstract
Toxic effects of aluminium (Al) on Picea abies (L.) Karst. (Norway spruce) trees are well documented in laboratory-scale experiments, but field-based evidence is scarce. This paper presents results on fine root growth and chemistry from a field manipulation experiment in a P. abies stand that was 45 years old when the experiment started in 1996. Different amounts of dissolved aluminium were added as AlCl3 by means of periodic irrigation during the growing season in the period 19972002. Potentially toxic concentrations of Al in the soil solution were obtained. Fine roots were studied from direct cores (1996) and sequential root ingrowth cores (1999, 2001, 2002) in the mineral soil (040 cm). We tested two hypotheses: (1) elevated concentration of Al in the root zone leads to significant changes in root biomass, partitioning into fine, coarse, living or dead fractions, and distribution with depth; (2) elevated Al concentration leads to a noticeable uptake of Al and reduced uptake of Ca and Mg; this results in Ca and Mg depletion in roots. Hypothesis 1 was only marginally supported, as just a few significant treatment effects on biomass were found. Hypothesis 2 was supported in part; Al addition led to increased root concentrations of Al in 1999 and 2002 and reduced Mg/Al in 1999. Comparison of roots from subsequent root samplings showed a decrease in Al and S over time. The results illustrated that 7 years of elevated Altot concentrations in the soil solution up to 200 M are not likely to affect root growth. We also discuss possible improvements of the experimental approach.
Abstract
In a balanced experiment based on 20 field plots located in a 21 km(2) Scots pine forest in southeast Norway covering age classes from newly regenerated to old forest, leaf area index (LAI) was determined in field by a LAI-2000 instrument and hemispheric photography. Based on a fortualized framework, i.e., the so-called Beer-Lambert law, gap fraction derived from small-footprint airborne laser scanner data was regressed against field-measured LAI. LAI was strongly (R-2 =0.87-0.93), positively, and linearly related to the log-transformed inverse of the gap fraction derived from the laser scanner data. This was as expected according to the Beer-Lambert law, as was the absence of an intercept, producing a directly proportionality of the two variables. We estimated an extinction coefficient for the first return echoes to be 0.7, fortunately fairly stable across age classes, and this is likely to be a parameter specific for the applied laser scanner system under the given flight and system settings, such as flying altitude and laser pulse repetition frequency. It was demonstrated that airborne laser was able to detect defoliation in terms of estimated changes in LAI, by three repeated laser data acquisitions over the area where severe insect attacks were going on in between the acquisitions. (c) 2006 Elsevier Inc. All rights reserved.
2003
Abstract
Establishment, survival and height growth of sown and naturally regenerated Picea abies (L.) Karst. seedlings were examined in a 6 yr period in eight stands on bilberry woodland in south- east Norway. Five harvesting treatments (shelterwoods of high, medium and low density, 253/25 m patch-cut, 503/50 m clear-cut) and three scarification alternatives (unscarified, patch scarification, inverting) were combined in a split-plot design. Establishment, survival and plant height after 6 yrs were positively affected by scarification. Significant differences between patch scarification and inverting were not observed, although mortality tended to be lower, and seedlings slightly taller, after patch scarification. Establishment after natural seedfall was least successful on the clear-cut, but more or less equal at the other stand treatments. Height growth increased with decreasing overstorey retention, while there was a tendency towards lower survival on the clear-cuts and patch-cuts. Natural regeneration in the unscarified plots was unsuccessful after 6 yrs, while the different combinations of harvesting and scarification treatments usually gave sufficient regeneration.