Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2014

Sammendrag

A wide range of forest products and industries have been examined in life cycle analyses (LCA). Life cycle data are essential for identifying forestry operations that contribute most to carbon emissions. Forestry can affect net CO2 emissions by changing carbon stocks in biomass, soil and products, by supplying biofuels to replace fossil fuels as well as by establishing new forests. The transport of forest products is crucial to greenhouse gas (GHG) emissions. We conceptualize the chain from seed production, silviculture, harvesting, and timber transport to the industry as a system. Inputs to the system are energy and fuel, the output represents GHG emissions. The reference functional unit used for the inventory analysis and impact assessment is one cubic meter of harvested timber under bark. GHG emissions from forestry in East Norway were calculated for the production of one such unit delivered to the industry gate in 2010 (cradle-to-gate inventory), showing that timber transport from the forest to the final consumer contributed with more than 50 % to the total GHG emissions. To assess uncertainty of model approaches, the LCA was conducted with two different models, SimaPro and GaBi, both using the Ecoinvent database with data adapted to European conditions.

Til dokument

Sammendrag

The accurate characterization of three-dimensional (3D) root architecture, volume, and biomass is important for a wide variety of applications in forest ecology and to better understand tree and soil stability. Technological advancements have led to increasingly more digitized and automated procedures, which have been used to more accurately and quickly describe the 3D structure of root systems. Terrestrial laser scanners (TLS) have successfully been used to describe aboveground structures of individual trees and stand structure, but have only recently been applied to the 3D characterization of whole root systems. In this study, 13 recently harvested Norway spruce root systems were mechanically pulled from the soil, cleaned, and their volumes were measured by displacement. The root systems were suspended, scanned with TLS from three different angles, and the root surfaces from the co-registered point clouds were modeled with the 3D Quantitative Structure Model to determine root architecture and volume. The modeling procedure facilitated the rapid derivation of root volume, diameters, break point diameters, linear root length, cumulative percentages, and root fraction counts. The modeled root systems underestimated root system volume by 4.4%. The modeling procedure is widely applicable and easily adapted to derive other important topological and volumetric root variables.

Sammendrag

A wide range of forest products and industries have been examined in life cycle analyses (LCA). Life cycle data are essential for identifying forestry operations that contribute most to carbon emissions. Forestry can affect net CO2 emissions by changing carbon stocks in biomass, soil and products, by supplying biofuels to replace fossil fuels as well as by establishing new forests. The transport of forest products is crucial to greenhouse gas (GHG) emissions. We conceptualize the chain from seed production, silviculture, harvesting, and timber transport to the industry as a system. Inputs to the system are energy and fuel, the output represents GHG emissions. The reference functional unit used for the inventory analysis and impact assessment is one cubic meter of harvested timber under bark. GHG emissions from forestry in East Norway were calculated for the production of one such unit delivered to the industry gate in 2010 (cradle-to-gate inventory), showing that timber transport from the forest to the final consumer contributed with more than 50 % to the total GHG emissions. To assess uncertainty of model approaches, the LCA was conducted with two different models, SimaPro and GaBi, both using the Ecoinvent database with data adapted to European conditions.

Sammendrag

Reliable methods are required to predict changes in soil carbon stocks. Process-based models often require many parameters which are largely unconstrained by observations. This induces uncertainties which are best met by using repeated measurements from the same sites. Here, we compare two carbon models, Yasso07 and Romul, in their ability to reproduce a set of field observations in Norway. The models are different in the level of process representation, structure, initialization requirements and calibration- and parameterization strategy. Field sites represent contrasting tree species, mixture and soil types. The number of repetitions of C measurements varies from 2 to 6 over a period of up to 35 years, and for some of the sites, which are part of long-term monitoring programs, plenty of auxiliary information is available. These reduce the danger of overparametrization and provide a stringent testbed for the two models. Focus is on the model intercomparison, using identical site descriptions to the extent possible, but another important aspect is the upscaling of model results to the regional or national scale, utilizing the Norwegian forest inventory system. We suggest that a proper uncertainty assessment of soil C stocks and changes has to include at least two (and preferably more) parametrized models.