Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

Groundwater pollution by agrochemicals, degradation of soil quality and pollution of aquatic ecosystems by agricultural drainage waters have become an issue in the last decades. Flow processes in the vadose zone are closely related to these problems. In general, water flow in soils can be classified into two major categories: uniform and non-uniform (preferential) flow (In: U.S. National Committee for Rock Mechanics, Conceptual Models of Flow and Transport in the Fractured Vadose Zone, 2001, pp.149-187). The former describes a relatively slow movement of water through the porous soil matrix and can be modelled by Richard”s equation. The latter comprises all flow types where water bypasses a portion of the soil matrix and flows through localised (i.e. preferential) paths. Unlike uniform flow, preferential flow is hardly predictable because the assumptions of Richard”s equation of a homogeneous representative elementary volume characterised by a single value of water potential, water content and hydraulic conductivity are frequently violated (Eur J Soil Sci, 2007; 58:523-546)....

Abstract

A crucial process of the terrestrial carbon cycle is photosynthetic uptake through plants. This may be quantified by calculating the fraction of absorbed photosynthetic active radiation (fapar), based on multispectral reflectance properties of the earth surface. The fapar index is available with global coverage from satellite sensors.Here, we combine two satellite missions, SeaWifs on board OrbView2 and MERIS on board Envisat, to produce time series with 10 days resolution for a period of 14 years (19982011) at a spatial resolution of 0.5 latitude x 0.5 longitude. These more than 50000 individual time series represent a huge range of dynamical behavior with respect to variability, periodicities and correlation structure.To characterize differences as a function of spatial location or distance, we employ Recurrence Quantification Analysis (RQA) and Recurrence Network Analysis (RNA). Two strategies are followed. On one hand, RQA and network variables are calculated for individual time series using identical recurrence parameters, and compared to see whether differences between them resemble different climate regimes, biomes, plant functional types or landuse classes. On the other hand, a multivariate extension of RNA will be exploited to see whether networks within networks occur, i.e. whether RNA provides sufficient contrasts to discern different clusters of pixels on the globe.Taken together, the recurrence analysis might lead to a new classification of the terrestrial biosphere which in turn can be compared to existing partitioning based on climate and/or vegetation properties. A number of technical issues will be addressed as well, such as the impact of the finite length of the series (504 values each), the necessity to gapfill parts of the data, the stability of network variables against changes in the recurrence parameters, or the computational challenges involved in the multinetwork analysis of many series. http://dames.pik-potsdam.de/Abstracts.pdf

Abstract

Our aim is to investigate the temporal dynamics of the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) on a global scale and its relation to the main meteorological variables across space. We focus on complex patterns in time, which are neither regular (trend and seasonality) nor random (noise), but somewhere in between. We quantify complexity and information content or entropy using methods from order statistics and complexity sciences.Time series with high entropy are difficult to predict, whereas time series with high complexity are difficult to describe. This leads to a spatially explicit characterization of complex patterns in a very sensitive way. We use FAPAR observations (SeaWiFS and MERIS, 1998 to 2012) along with gridded global surface air temperature, precipitation and shortwave radiation.All these time series are explored on a pixelbypixel basis and clustered according to a very recent classification system of the land surface. In addition, we quantify the time reversal asymmetry of these data. We compare environmental time series with data from a stochastic candidate process temporally symmetric and long range correlated artificial knoise.Results were plotted in the ComplexityversusEntropy plane (CH plane), showing the particular footprint of each variable in a very sensitive way. Visualized in world maps, results revealed unexpected complex pattern in some dry regions, in particular on pixels surrounding deserts and in eastern Sahara. In this respect, the results provide a new classification of the climate and the biosphere. http://dames.pik-potsdam.de/Abstracts.pdf

Abstract

We calculate entropy and complexity of runoff time series and artificially generated series with long-range correlations. Entropy and complexity of data series may be represented against each other in a two-dimensional diagram which we will refer to as Complexity-Entropy Causality Plane, or CECP. We use a recently developed framework for these two indicators based on order statistics. It is well-known that runoff, as all other environmental time series actually measured, is a mixture of deterministic (signal) and stochastic (noise) parts, the latter due to noise inherent in the measurement process and externally induced by natural processes. The distinction between signal and noise is notoriously difficult and subject to much debate. In our approach, the observed series are compared to purely stochastic but long-range correlated processes, the k noise, where k is a parameter determining the strength of the correlations. Although these processes resemble runoff series in their correlation behavior and may be even tuned to any runoff series by changing the value of k, the CECP locations and in particular the order pattern statistics reveals qualitative differences between runoff and k noise. We use these differences to conclude on the deterministic nature of the (short-term) dynamics of the runoff time series. The proposed methodology also represents a stringent test bed for hydrological models.

Abstract

In South-east Norway, several scattered observations of reduced growth and dieback symptoms were observed over the last 20 years in 40-60 years old Norway spruce (Picea abies) trees. Typical symptoms start with yellowing in the top and subsequent dieback downwards from the top. These symptoms are often combined with bark beetle (Ips typographus), honey fungus (Armillaria spp.) infections, and a sudden decrease in diameter and height growth. After about 1-5 years, most of the symptomatic trees are dead.We selected 11 representative stands in six counties. In each stand all trees in ten 250 m2 plots were evaluated, in total about 4000 trees. In each of these 110 plots, one symptomatic and one non-symptomatic tree were investigated in more detail. We measured tree diameter, height, took increment cores and assessed crown condition, wounds, resin flow, stem cracks, bark beetle infection and Armillaria presence. In addition, internode lengths of the last 20 years were measured in two of the stands.Preliminary results of internode lengths and increment cores showed a sudden decrease of height and diameter growth in the symptomatic trees. Many of these trees had a secondary infection of bark beetles and Armillaria. Some years appear to be typical problem years for many of the trees. These years also correspond with summer drought, i.e. negative Palmer drought severity indexes which were estimated for each stand. In comparison, the non-symptomatic trees, growing close to the symptomatic ones, showed none or minor growth reductions and discolouration.Climate change and increased summer drought may worsen spruce dieback problems. Management adaptions are uncertain. We conclude that Norway spruce is sensitive to drought, which reduce the growth and weaken the health, and probably reduce the defence against secondary infections.

2011

To document

Abstract

The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH+ CoF) and normal nitrogen-based (CH + F or WTH+ F) fertilisation were also studied. A series of 22 field experiments were established during 1977–1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10–13 years at 11 experimental sites. Seven experiments were followed for 25 years. Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response. Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10- year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site. If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH+ CoF), the volume increment was equal to that in the CH plots. Nitrogen (150–180 kg ha−1) or N+ P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13m3 ha−1, followed by a negative response of 5m3 ha−1 during the second 10-year period. The fertilisation effect of WTH+ F and WTH+ CoF on basal area increment was both smaller and shorter than with CH+ F.

Abstract

The pine weevil (Hylobius abietis) is an important pest to conifer seedlings in large parts of Europe. To get an objective measure of the extent of damages related to pine weevils in South-Eastern Norway, a survey was implemented in the autumn of 2010 in nine counties. Altogether, 155 stands regenerated by planting in 2009 or 2010 were examined. The percentage of seedlings killed from pine weevil attacks varied between 0 and 63 % in the surveyed fields. On average, 7 % of the seedlings were killed by pine weevils, while 23 % had bark wounds. In addition, 3 % of the seedlings were killed by other causes. Few of the registered field variables were correlated to the degree of damage, but there was a tendency towards higher mortality at the largest clear cuts, in hilly areas, and for dry soil types. The present survey shows that in unscarified stands in SE Norway pine weevils are the most important cause of seedling mortality. A total seedling mortality of at least 10% should be expected the first two years.