Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document See dataset

Abstract

This study aimed to evaluate the rheological properties of doughs with 50% brewers’ spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G′ > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G′, G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.

To document

Abstract

The accumulation of petroleum-based plastics causes economic and environmental concerns which necessitate a comprehensive search for biodegradable packaging materials. Brewer's spent grain (BSG) is an interesting by-product, which is one of the main wastes of beer production in Europe. BSG could offer added value in the food packaging sector owing to the significant amount generated annually, high biomaterials content, and low market value. Herein, the significance of various biorefinery techniques (physical, chemical, and biological) for the extraction of high-value products (such as protein, cellulose, hemicellulose, lignin, and phenolic compounds) from the BSG are comprehensively examined. BSG-derived biodegradable films and coatings for food packaging are critically evaluated. Finally, techno-economics, environmental impacts, energy consumption, regulations, challenges, and prospects are also critically evaluated. The best biorefinery system necessitates a balance between extraction efficiency, energy consumption, environmental impact, tangible upscaling, and operating cost. The mechanical dewatering of BSG before extraction, including the physical pretreatments, utilization of green solvents, the integration of the solvent recovery system, and the combination of two or more biorefinery techniques could reduce the energy requirements, greenhouse gas emissions, and increase the recovery yield of biomaterials. Cellulose, lignin, xylitol, and arabinoxylan are recommended as the most promising components from BSG for food packaging applications.

To document

Abstract

The marine food-processing industries were producing large quantities of shell wastes as a discard. Currently, this waste material was underutilized and leads to the landfill as a significant environmental issue. The outer shells or exoskeletons of mollusks serve as the best source of chitin. Three different allomorphs of chitin (γ, β, and γ) were extracted from different species of crustaceans, mollusks, and fungi. β-Allomorphs predominantly exist in the shells of mollusks. β-Chitin and its deacetylated product chitosan has been utilized for its special characteristic features, including biocompatibility, environmental friendly, and nontoxic properties. The extraction of β-chitin and chitosan from the mollusk shell waste were evaluated in this work. Hence, this review aims to explore edible mollusk shell waste sources and its suitable extraction techniques, characterizations, and functional properties of mollusk-based β-chitin and chitosan. Further, the genetic pathway of synthesizing mollusk chitin was discussed. The entire life cycle assessment with techno-economic aspects were extrapolated to study the bottlenecks and tangible solution for the industrial upscaling of obtaining β-chitin and chitosan from the edible mollusk shell waste have been reviewed herein.

Abstract

Aquaculture of marine macroalgae is an important part of the world’s food production. In Norway, the fast-growing kelp Saccharina latissima has the highest potential for industrial biomass production. Aquaculture in the country’s fjords is economically more viable for SMEs, supports the development of IMTA and could allow the industry to approach the projected 20 million tons by 2050. However, S. latissima is exposed to a considerable decline in seawater salinity during the growth season, which affects the biomass production. This presentation shows results of industrial R&D projects in which the presence of “low-salinity tolerant” strains of S. latissima in a North Norwegian fjord and their responses to the seasonal salinity decline was studied. In a laboratory-based common garden experiment, sporophytes of S. latissima from different locations in Skjerstadfjorden were cultivated under different salinities for six weeks. Growth and photosynthetic parameters were measured to understand their physiological responses to salinity stress. Then their F1 generation were seeded on ropes and deployed at a commercial aquaculture site in Skjerstadfjorden to study strain-specific differences in biomass production and yield, optimal growth depths and biochemical composition of S. latissima. In addition, the aquaculture site was characterised by measurements of physical and chemical parameters. The projects’ results will help North Norwegian macroalgae producers to improve the biomass production and biochemical composition of S. latissima. These findings could lay the foundation for the development of breeding programmes in Norway and could demonstrate the macroalgae producers in Norway the possibility of establishing aquaculture in fjords.

To document

Abstract

Chlorella vulgaris is a freshwater microalga that synthesises large amounts of saturated lipids, which makes it suitable for production of bioenergy and biofuels. Since its cultivation usually requires freshwater, it competes with agriculture, economic development and ecological conservation for this limited natural resource. This study investigated the possibility of the partial replacement of freshwater by seawater (50 %) in the growth medium for a more sustainable biomass and lipid production. Chlorella vulgaris 211-11b was cultivated as shake-flask cultures in Bold's Basal Medium (BBM) formulated with 50 % freshwater and 50 % seawater under photoautotrophic, mixotrophic and heterotrophic conditions for eight days with glucose as organic carbon source in the latter two cases. The alga's best growth performance and highest lipid contents (49 % DW−1), dominated by palmitioleic and oleic acid, occurred under mixotrophic rather than photoautotrophic and heterotrophic conditions. This study demonstrates a more economic and ecologically sustainable biomass and lipid production of C. vulgaris by saving 50 % freshwater, which is available for other purposes.

To document

Abstract

The Norwegian Scientific Committee for food an Environment (VKM) has assessed an application for authorisation of refined oilseed rape oil (Aquaterra®) derived from genetically modified oilseed rape line NS-B50027-4 for exclusive use as an ingredient in fish feed in Norway. NS-B50027-4 is also named DHA-canola. This report uses the term oilseed rape. NS-B50027-4 produces omega-3 long-chain (≥C20) polyunsaturated fatty acids (omega-3 LC-PUFAs) in its seeds, with a high level of docosahexaenoic acid (DHA) and a small amount of eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA). Aquaterra® also contains a significant level of alpha-Linolenic acid (ALA). Whereas ALA can be derived from plants, the primary producers of EPA and DHA are mainly marine microalgae. EPA and DHA are concentrated in the food chain to fish in the oceans and are often referred to as marine omega-3 fatty acids. NS-B50027-4 was developed as an alternative land-based source of marine fatty acids, mainly DHA. NS-B50027-4 was genetically modified to express seven transgenes derived from yeasts and marine microalgae that encode the enzymes necessary for the biosynthesis of omega-3 long chain polyunsaturated fatty acids. In addition, an eighth gene, pat, was inserted as a marker for selection purposes during development. The pat gene encodes the enzyme phosphinothricin N-acetyltransferase (PAT) conferring tolerance to glufosinate-ammonium herbicides. Equally to conventional refined oilseed rape oils any residues levels of proteins, including the introduced enzymes, will be negligible in the Aquaterra® oil. The risk assessment of Aquaterra® was conducted in accordance with the guidance for risk assessment of derived food and feed from genetically modified plants as described by the European Food Safety Authority (EFSA, 2011a). The risk assessment is based primarily on scientific documentation provided in the application EFSA-GMO-NL-2019-160, which seeks approval for NS-B50027-4 for all applicable food and feed uses in the European Union (EU). VKM concludes that the provided scientific documentation fulfills the criteria of the EFSA guidance and is adequate for risk assessment. VKM concludes that the molecular characterisation, comparative, nutritional, toxicological and allergenicity assessments of NS-B50027-4 do not indicate increased risks to animal or human health compared to its conventional counterpart (comparator) or commercial reference varieties. Based on this together with specific analyses of the seed oil fraction and studies, e.g., in fish, VKM therefore concludes that the refined oil Aquaterra®, is equal to conventional oils from oilseed rape except for the altered composition in fatty acids. VKM concludes there is no increased health risk to fish fed Aquaterra® in feed compared to conventional feeds with oils from other sources, nor is there an indication of increased risk to the environment. Since Aquaterra® is equal to conventional oils from oilseed rape except for the marine omega-3 fatty acids already present in fish feeds, VKM concludes there is no greater need for health or environmental monitoring of feeds containing Aquaterra® than conventional feeds.

Abstract

Since the world’s population is increasing, alternative food sources must be tapped. Although algae have a high potential to become a part of our diets due to their favorable nutritional properties, there is a little information on the willingness of consumers in Norway to try algae-made foods. In this paper we used a Norwegian survey to address this question. We constructed an order logistic regression model and predicted conditional probabilities to try algae food. The results show that among the most important aspect for willingness to try food with algae is age, health conscientiousness, and environmental attitudes.