Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

In Europe, turbot aquaculture has a high potential for sustainable production, but the low tolerance to fishmeal replacement in the diet represents a big issue. Therefore, this study investigated the effects of more sustainable feed formulations on growth and feed performance, as well as nutritional status of juvenile turbot in recirculating aquaculture systems. In a 16-week feeding trial with 20 g juvenile turbot, one control diet containing traditional fishmeal, fish oil and soy products and two experimental diets where 20% of the fishmeal was replaced either with processed animal proteins (PAP) or with terrestrial plant proteins (PLANT) were tested. Irrespective of diets, growth performance was similar between groups, whereas the feed performance was significantly reduced in fish of the PAP group compared to the control. Comparing growth, feed utilisation and biochemical parameters, the results indicate that the fish fed on PAP diet had the lowest performance. Fish fed the PLANT diet had similar feed utilisation compared to the control, whereas parameters of the nutritional status, such as condition factor, hepato-somatic index and glycogen content showed reduced levels after 16 weeks. These effects in biochemical parameters are within the physiological range and therefore not the cause of negative performance. Since growth was unaffected, the lower feed performance of fish that were fed the PAP formulation might be balanced by the cost efficient formulation in comparison to the commercial and the PLANT formulations. Present study highlights the suitability of alternative food formulation for farmed fish.

To document

Abstract

Chitin is one of the most diverse and naturally occurring biopolymers, and it is mainly present in crustaceans, insects, and fungi. Chitosan is derived from chitin by deacetylation process. It is important to note that the conventional chemical method of extracting chitin includes disadvantages and it poses various environmental issues. Recently, the green extraction techniques have perceived substantial development in the field of polymer chemistry. A variety of methods have been successfully developed using green extraction techniques for extracting chitin and chitosan from various resources. It includes the use of ionic liquids (ILs), deep eutectic solvents (DES), microbial fermentation, enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), and electrochemical extraction (ECE). In this review, the extraction of chitin and chitosan using greener approaches were summarized. In addition, challenges, opportunities and future perspectives of green extraction methods have also been narrated.

To document

Abstract

Aquaculture industry is one of the major food-producing sectors in the world that provide nutritional food security for mankind. Fish and crustacean farmers are facing various challenges in treating the rapid spread of infectious diseases in recent times. Numerous strategies, including antibiotics, disinfectants, and other antimicrobial agents, have been applied to protect the cultivable aquatic animals from infectious diseases. These applications lead to the development of antimicrobial resistance, toxicity, and the accumulation of antibiotic residues in cells and organelles of the cultivable edible organisms and the environment. The use of naturally derived compounds, polysaccharides, and functional metabolites has gained immense attention among aquaculturists. Mushrooms and their nutraceutical components have been widely used in various sectors, including food, pharmaceutical, poultry, and aquaculture industries, for their non-toxic and eco-friendly properties. To date, there are several reports available on edible and medicinal mushrooms as a dietary ingredient for fish and decapod crustacean culture. The mushroom products such as mycelia, stalk, dry powder, polysaccharides, and extracts have been utilized in aquaculture as growth promoters and immunostimulants, improving the digestive enzyme activity, antimicrobials, and improving the health status of cultivable aquatic animals. This present review elucidates the effectiveness of mushrooms and mushroom-derived compounds as prebiotics in aquaculture. The challenges and future perspectives of mushroom-derived bioactive molecules have been discussed in this review.

To document

Abstract

Aquaculture industry is one of the world’s fastest and largest growing food producing sector. Most importantly, the usage of fish meal in aquaculture has been replaced with alternate protein sources due to their production cost, demand of raw materials and various environmental issues. The insect black soldier fly (Hermetia illucens) larval (BSFL) meal is being recognized as a feed ingredient in aquafeeds for their protein rich content similar to fish meal (FM). BSFL meal has been utilized as a fish meal or soy meal substitution in aquaculture to improve the nutrition. The culture of H. illucens larvae can be achieved using various biodegradable wastes and converted into a valuable biomass. In addition, the proximate analysis of H. illucens has been analyzed for its multifaceted role in poultry, cattle feed preparation and human consumption. The effectiveness of BSFL diet was analyzed for final body weight (FBW), specific growth rate (SGR), feed conversion ratio (FCR), feed intake (FI), feed efficiency (FE) and survival (SUR) of different fish and shrimp used as an experimental models with FM as the control diet. However, there is no comprehensive review available on the BSFL as an alternate protein source in aquaculture till date. Hence, the present review aimed to evaluate the feasible role of BSFL in feed, its sustainable production and challenges of BSFL meal in aquaculture sector along with their merits and demerits.

To document

Abstract

Phototrophic microalgae use light to produce biomass and high-value compounds, such as pigments and polyunsaturated fatty acids (PUFA), for food and feed. These biomolecules can be induced by flashing light during the final growth stage. We tested different exposure times (1–6 days) of flashing light (f = 0.5, 5, 50 Hz; duty cycle = 0.05) on biomass, pigment and fatty acid productivity in Diacronema lutheri and Tetraselmis striata. A three-day exposure to low-frequency (5 Hz) flashing light successfully increased the production of fucoxanthin, diatoxanthin, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in D. lutheri up to 4.6-fold and of lutein, zeaxanthin and EPA in T. striata up to 1.3-fold compared to that of continuous light. Biomass productivity declined 2-fold for D. lutheri and remained similar for T. striata compared to that of continuous light. Thus, short-term treatments of flashing light may be promising for industrial algal production to increase biomass value.

To document

Abstract

Seaweed is considered a potentially sustainable source of protein for human consumption, and rapid, accurate methods for determining seaweed protein contents are needed. Seaweeds contain substances which interfere with common protein estimation methods however. The present study compares the Lowry and BCA protein assays and protein determination by N-ratios to more novel spectroscopic methods. Linear regression of the height or the integrated area under the Amide II band of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to predict seaweed protein with good prediction performance. Partial least squares regression (PLSR) was performed on both DRIFTS and near-infrared (NIR) spectra, with even higher prediction accuracy. Spectroscopy performed similar to or better than the calculated N-ratio of 4.14 for protein prediction. These spectral prediction methods require minimal sample preparation and chemical use, and are easy to perform, making them environmentally sustainable and economically viable for rapid estimation of seaweed protein.

To document

Abstract

The large brown seaweeds (kelps) are potential sources of protein for animal feed. They have lower protein contents than most red and green algae, but due to potential for large-scale production, they may represent a significant future protein source. The impact of pH, temperature and polysaccharide-degrading enzymes on the solubility and extraction yields of protein from wet Saccharina latissima biomass was investigated. The protein solubility increased with increasing pH and reached maximum of 23% at pH 11, determined as total amino acids (TAA). The enzyme treatments increased the release of soluble compounds by 30–35%. The highest protein yield obtained was 19%, using a ratio of water to wet seaweed of 1:1 for extraction. Even if the yields can be increased by increasing the water amounts used for extraction, the majority of the protein would remain in the insoluble residue after separation. The strategy for production of a larger quantity of protein-enriched biomass was therefore to maintain the insoluble fraction as the product. A pilot scale production was carried out, also including the red algae Palmaria palmata. In total 750 kg S. latissima and 195 kg P. palmata were processed. The protein content in the product increased from 10 to 20% of dry weight (dw) for S. latissima and from 12 to 28% for P. palmata, with yields of 79 and 69%, respectively. The ash content was reduced from 44 to 26% and from 12 to 5% of dw, respectively, for the two species. The main protein loss was free amino acids, which constituted approximately 10% of TAA in the feedstocks. Less essential than non-essential amino acids were lost, thus, the essential amino acids were enriched in the product.

To document

Abstract

Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southern-most population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.

Abstract

Answers to survey asking for suggestions for new products in EU's new regulation for fertilisers. Fish sludge is suggested as material in compost and digestate, and a summary with references is provided.