Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

This study aimed to evaluate the rheological properties of doughs with 50% brewers’ spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G′ > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G′, G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.

To document

Abstract

There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.

To document

Abstract

Global measures to bring net-zero-carbon and zero-waste emissions are expanding at a rapid pace. Currently, only 16% of the plastic waste from the food industrial sector is reprocessed and recycled, which is way lesser than its accumulation. Several countries have imposed a ban on single-use plastic derived from food and/or beverage industries. All these constraints and challenges have encouraged researchers to find a sustainable alternative to petroleum-based food packaging. The environmentally friendly substitute can be the bio-based polymer material derived from agri-food and marine wastes that connect the waste loop in the current economic model. This waste has the most valuable biopolymer mainly present in the cell wall matrix of plants, animals, bacteria, fungi, and algae. All these biopolymers are either accumulated in a landfill or not entirely harvested their high-value compounds as a potential feedstock. Nevertheless, bio-based polymers have better thermos-mechanical properties that can resist various conditions. They comprise superior functional properties when these biopolymers are coupled with other organic compounds such as composite films or multilayer packaging films which enhance the shelf-life of the food. Overall, biopolymers readily react with the soil microbes under specified environmental conditions that can significantly enhance the biodegradability of packaging material. This unique quality is envisaged to solve the existing problems and detrimental effects of synthetic polymer usage in the food industry. In this background, in this chapter, the origin of biopolymers and their potential functionality, mechanical property, and degradability as food packaging materials are discussed. Their current challenges and possible future prospects are also meticulously highlighted.