Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

Pilgrims travel along the main reopened St Olav pilgrim routes in Norway and visit a variety of cultural heritage types. These routes are part of a value creation programme, in which the management authorities try to increase the numbers of pilgrims. At the same time, forest regrowth is reported to reduce the landscape experience of pilgrims and to biophysically change the cultural heritage sites. However, no studies have been reported on the spatial encroachments of forests along the pilgrim routes. The purpose of this study is to analyse where forest regrowth along the main reopened pilgrim routes in Norway will appear, given the present climatic conditions, and to assess the spatial overlap of future forest regrowth with cultural heritage sites. A potential forest model and a cultural heritage sites database were combined with several baseline geographical data layers and spatially joined in geographical information systems. The results show that most of the future forest regrowth will appear in mountainous parts of the pilgrim routes, whereas many hunting sites, tradition sites and other cultural heritage sites will be overgrown by young forests. Therefore, management efforts to keep the main pilgrim routes open need to be strengthened and directed towards future risks.

To document

Abstract

Long-term and varied land use has had a major influence on the vegetation in rural Norway, and the traditional open landscapes are now being replaced by forests. In the present investigation, we assess and quantify structural vegetation changes caused by changes in land use and climate. Up-to-date actual vegetation maps from three rural study areas were compared with interpreted historical vegetation maps and potential natural vegetation (PNV) models. Our findings indicate that the present vegetation structure is strongly influenced by land use. In the studied sites, 56–66% of the areas presently have another vegetation type than expected from a natural state (PNV). The mean turnover of vegetation types in the study areas during the past 35–40 years was 25%. Our study highlights that the influence of land-use needs to be accounted for when considering the effects of climate change.

To document

Abstract

The purpose of the study was to explore and compare three different methods for modelling potential natural vegetation (PNV), a hypothetic natural state of vegetation that shows nature's biotic potential in the absence of human influence and disturbance. The vegetation was mapped in a south-central Norwegian mountain region, in a 34.2 km2 area around the village of Beitostølen, in 2009. The actual vegetation map (AVM) formed the basis for the development of PNV using three different modelling methods: (1) an expert-based manual modelling (EMM), (2) rule-based envelope GIS-modelling (RBM), and (3) a statistical predictive GIS-modelling method (Maxent). The article shows that the three modelling methods have different advantages, challenges and preconditions. The findings indicate that: (1) the EMM method should preferably be used only as a supplementary method in highly disturbed areas, (2) both the RBM and the Maxent methods perform well, (3) RBM performs especially well, but also Maxent are more objective methods than EMM and they are much easier to develop and re-run after model validation, (4) Maxent probably underestimates the potential distribution of some vegetation types, whereas RBM overestimates, (5) the Maxent output is relative probabilities of distribution, giving higher model variation than RBM.

2011

Abstract

Extensive landscape and vegetation changes are apparent within rural districts of Norway, especially as forest regrowth on abandoned agricultural land. Forest regrowth changes the landscape and vegetation heterogeneity, thus affecting management issues related to, for example, biodiversity and landscape aesthetics. By comparing up-to-date actual vegetation maps (AVMs), interpreted previous vegetation maps (IPVs), and potential natural vegetation maps (PNVs), we assess and quantify structural changes on a landscape level which are important for biological diversity and also the tourism industry. Our findings indicate that landscapes in rural districts of Norway have changed and that changes will continue in the future. The landscapediversity did not decrease from the 1970s until 2009. Further forest regrowth however, will lead to reduced landscape heterogeneity, while landscape connectivity will increase.

To document

Abstract

The Norwegian landscape is changing as a result of forest regeneration within the cultural landscape, and forest expansion has impacts on accessibility, visibility, and landscape aesthetics, thereby affecting the country's tourism industry. This study aimed at identifying the potential areas of forest regeneration and anticipated subsequent landscape effects on different categories of tourist locations in southern Norway. Deforested areas with a potential for forest regeneration were identified from several map sources by GIS-analyses, and 180 tourist locations were randomly selected from the Norwegian national tourism database (Reiselivsbasen), and then buffered by 2 km radius for land cover classes. The findings revealed that approximately 15% of southern Norway has the climatic potential for future forest regeneration, in addition to 5% of cultivated land. Future forest regeneration will affect the landscapes surrounding the tourist locations of rural south Norway, and while the potential is nationwide, it is not uniformly distributed. Two important tourist landscape regions seem especially exposed to forest regeneration: the coastal heath region and the mountain landscapes. Large parts of these areas do not have sufficient numbers of domestic grazing animals necessary to maintain the present character of the landscape.

Abstract

Forest regrowth in rural districts of Norway is currently leading to extensive landscape changes. We aim to quantify and understand the future impact of outfield forest regrowth following land-use abandonment on red-listed vascular plant species which are supposedly threatened by regrowth in Norway, i.e. species classified to habitats within the semi-natural landscape. Vascular plant species were defined by the Norwegian Red List and presence data was downloaded from the Norwegian GBIF-node, Artskart. A newly developed spatially explicit model of deforested semi-natural heaths and meadows in Norway was used to evaluate the vulnerability of red-listed plants to future forest regrowth. The results show that some red-listed species may be greatly affected, since they have most of their known populations within the modelled areas of future forest regrowth. The study also revealed that there are many methodological challenges in using museum databases for hypothesis testing. However, the use of such databases was clearly hypothesis generating, giving us many ideas for future studies.

2010

Abstract

For almost 40 years the Norwegian Forest and Landscape Institute (Norsk institutt for skog og landskap) has mapped vegetation in Norway. In total, just over 10 % of the country’s land area has been mapped, most of which is in the mountain regions. The resultant vegetation maps are the closest Norway has to an ecological map series. Many secondary map themes can be derived from the vegetation map and the digital format allows a wealth of both spatial and temporal GIS-analyses. Accordingly, there are many user groups and topics of interest. During 2009 the aim is to make the institute’s vegetation maps available to all via the Internet in a seamless database.

Abstract

Extensive landscape and vegetation changes are apparent within southern Norway, specifically the expansion of forests into new areas and to higher altitudes. Two main processes are believed to cause these changes: regrowth after abandoned human utilisation and recent climate changes. The purpose of this article is to elucidate ways of separating the effects of these two processes on spatiotemporal changes in the upper forest limits using examples from southern Norway. Examples from two spatial scales are implemented, a vegetation map study of a mountain region in south-east Norway and a national map-based study of south Norway. The findings show that multiple methods are necessary to understand the forest limit changes and that the research focus should be on the separation of potential drivers, specifically climate improvements and land-use changes.