Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Tree species change has been suggested as one of the government policies to mitigate climate change in Nor-way with the aim to increase the annual uptake of CO2 and the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. A shift in tree species is expected to affect the pools and fluxes of C in the stand as well as the microbial community. As part of the BalanC project, we assess C storage related to shift in tree species cover in western Norway and whether a corresponding shift in soil microbial communities are happening. The study aim at integrating results on soil respiration, C mineralization, soil stability, diversity of bacteria, fungi and micro-eukaryotes, soil nutrient pools, litter inputs and edaphic factors at the stand level in order to identify key drivers for changes in the soil C stocks. Fifteen paired plots of native birch and planted Norway spruce at five locations were sampled. Prelimi-nary results suggests a redistribution of C from the mineral soil to the forest floor in the spruce stands, with minor changes in the total soil C pools over the 45-60 years since the tree species change. The in situ soil respi-ration and heterothropic respiration, as well as C mineralization rates, were higher in birch than in spruce stands. Differences in C mineralization rates attenuate with depth between forest types. The microbial com-munities of the three organismal groups were all strongly structured along the vertical depth.

Abstract

Monitoring changes in forest height, biomass and carbon stock is important for understanding the drivers of forest change, clarifying the geography and magnitude of the fluxes of the global carbon budget and for providing input data to REDD+. The objective of this study was to investigate the feasibility of covering these monitoring needs using InSAR DEM changes over time and associated estimates of forest biomass change and corresponding net CO2 emissions. A wall-to-wall map of net forest change for Uganda with its tropical forests was derived from two Digital Elevation Model (DEM) datasets, namely the SRTM acquired in 2000 and TanDEM-X acquired around 2012 based on Interferometric SAR (InSAR) and based on the height of the phase center. Errors in the form of bias, as well as parallel lines and belts having a certain height shift in the SRTM DEM were removed, and the penetration difference between X- and C-band SAR into the forest canopy was corrected. On average, we estimated X-band InSAR height to decrease by 7 cm during the period 2000–2012, corresponding to an estimated annual CO2 emission of 5 Mt for the entirety of Uganda. The uncertainty of this estimate given as a 95% confidence interval was 2.9–7.1 Mt. The presented method has a number of issues that require further research, including the particular SRTM biases and artifact errors; the penetration difference between the X- and C-band; the final height adjustment; and the validity of a linear conversion from InSAR height change to AGB change. However, the results corresponded well to other datasets on forest change and AGB stocks, concerning both their geographical variation and their aggregated values.

To document

Abstract

Projected climate change scenarios such as frequently occurring dry summer spells are an enormous threat to the health of boreal conifer forests. We identified visible features indicating wood with tracheids predisposed for hydraulic and mechanical dysfunction in Norway spruce, suggest why this is formed during severe summer drought and hypothesised on mechanism that would cause tracheid collapse and stem cracks. Trees from southern Sweden that showed signs of severe reaction to drought, i.e. stem cracks along the trunk, were compared to healthy, undamaged trees. Rings investigated included those formed in 2006, a year with an extremely dry summer season in the study region. In southern Norway, we investigated trees with and without drought-induced top dieback symptoms. We analysed anatomical features such as tracheid lumen diameter, thickness of cell wall and its various layers (S1, S2 and S3), applied Raman imaging in order to get information on the lignin distribution in the cell wall and the compound middle lamellae and performed hydraulic flow and shrinkage experiments. Although tracheids in annual rings with signs of collapse had higher tangential lumen diameters than those in “normal” annual rings, we conclude that collapse of tracheid walls depends mainly on wall thickness, which is genetically determined to a large extent. Spruce trees that produce earlywood with extremely thin cell walls can develop wall collapse and internal cracks under the impact of dry spells. We also present a new diagnostic tool for detecting individuals that are prone to cell wall collapse and stem cracks: Lucid bands, i.e. bands in the fresh sapwood with very thin cell walls and inhomogeneous lignin distribution in the S-layers and the compound middle lamellae that lost their hydraulic function due to periods of severe summer drought. The detection of genotypes with lucid bands could be useful for an early selection against individuals that are prone to stem cracks under the impact of severe summer drought, and also for early downgrading of logs prone to cracking during industrial kiln drying

To document

Abstract

In the Nordic-Baltic region, there has been a growing concern about an increasing occurrence of multiple tops in young stands of Norway spruce. There is however a lack of documentation on the amount of such damages, and the causal agents involved. In two separate studies in SE Norway, we assessed the frequency of multiple tops in young sapling-sized stands, and studied the relationship between the occurrence of multiple tops and lammas growth the previous growing season on the sample trees. Study 1 included 44 planted and 10 naturally regenerated stands, while Study 2 included 68 planted stands with information on seed source. Among sample trees with multiple tops, 57% (Study 1) and 32% (Study 2) had signs of lammas growth the previous autumn, either in the form of an extended leading shoot or swollen bud. Site index as well as sample tree height were positively correlated to the occurrence of both lammas growth and multiple tops in both studies. In Study 1 we show that the probability of lammas growth was significantly higher in planted than in naturally regenerated stands. In Study 2 we show that it was higher in stands planted with seedlings grown from stand-origin seeds compared with improved seed material. Furthermore, the results of both studies show that lammas growth occurs most frequently among the dominant trees in the stand.