Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2004

Abstract

Extensive monitoring of forest health in Europe has been carried out for two decades, based mainly on defoliation and discolouration. Together these two variables reflect chlorophyll amounts in the tree crown, i.e. as an indicator of foliar mass, and chlorophyll concentration in the foliage, respectively.In a current project we try to apply remote sensing techniques to estimate canopy chlorophyll mass, being a suitable forest health variable. So far, we limit this to Norway spruce only. LIDAR data here play an important role, together with optical and spectral data, either from survey flights or from satellites. We intend to model relationships between foliar mass and LIDAR data for sample trees, and then scale up this to foliar mass estimates for the entire LIDAR area.Similarly, we try to scale up chlorophyll concentrations in sample trees, by modelling a relationship between sample tree chlorophyll and hyper-spectral data. The estimates of foliar mass and chlorophyll concentrations are then aggregated to every 10x10 m pixel of a SPOT satellite scene which is also covered by airborne data, providing an up-scaled ground truth. If we are successful with this, it might be a starting point for developing a new nationwide forest health monitoring system in Norway.

Abstract

Summer drought, i.e. unusually dry and warm weather, has been a significant stress factor for Norway spruce in southeast Norway during the 14 years of forest monitoring. Dry and warm summers were followed by increases in defoliation, discolouration of foliage, cone formation and mortality. The causal mechanisms are discussed. Most likely, the defoliation resulted from increased needle-fall in the autumn after dry summers.During the monitoring period 19882001, southeast Norway was repeatedly affected by summer drought, in particular, in the early 1990s. The dataset comprised 455 Forest officers plots with annual data on crown condition and mortality. Linear mixed models were used for estimation and hypothesis testing, including a variancecovariance structure for the handling of random effects and temporal autocorrelation.

2003

Abstract

Distance-independent individual tree growth models based on about 30,000 observations from the National Forest Inventory and the Norwegian Forest Research Institute have been developed for the main tree species in Norway.The models predict 5-year basal area increment over bark for trees larger than 5cm at breast height. Potential input variables were of four types: size of the tree, competition indices, site conditions, and stand variables including species, mixtures and layers. The squared correlation coefficient (R2) varied from 0.26 to 0.55.The accuracy of the models was tested by comparing the individual tree models with Norwegian diameter increment models. The accuracy is similar, but individual tree models forecast diameter distributions directly. The inclusion of species mixture and layer as variables increases the reliability of the models in mixed and in uneven-aged stands

Abstract

Mortality, injury and height growth of planted Picea abies (L.) Karst. were examined in a six-year period in eight stands in southeast Norway. There were four residual stand densities (shelterwoods of high, medium and low density, 25 x 25 m patch cut) combined with three scarification treatments (unscarified, patch scarification, inverting) in a split-plot design. Mortality was generally low during the experimental period, and did not differ significantly between the residual density treatments (mean=11.1%). Both survival and plant height after 6 years were improved by inverting, while patch scarification was intermediate but not significantly different from the unscarified alternative. The patch-cutting resulted in the tallest plants, while only minor differences in height growth were found between the shelterwood treatments. The frequency of injured plants after six years was not significantly affected by the treatments (mean=10.6%). The improved plant establishment with inverting in this study is in agreement with previous studies on clear-cuts.

2002

Abstract

This study shows that it is questionable if critical load modelling can contribute in the search for harmful effects of acid deposition on forest health at present. Critical loads for S and N deposition were calculated using the MAGIC and PROFILE models for more than 100 monitoring plots in Norway spruce forest in south-east Norway. The two models gave different results, likely due to differences in the models, including differences in the time spans applied. The PROFILE model gave considerably more plots with exceedance than the MAGIC model. At plots where the CL was exceeded, calcium/aluminium (Ca/Al) ratios in the soil solutions were low. However, very few of these plots had possible harmful values of the Ca/Al-ratio. More than 50 yr seems in most cases to be needed to bring Ca/Al ratios below 1.0. Present deposition was better correlated with measured forest condition variables such as crown condition and needle chemistry, than with modelled exceedance according to any of the two methods. The deposition of S and N was weakly, negatively correlated to foliar concentrations of P and Ca, and positively to foliar N concentrations and crown density.

2001

Abstract

Foliage nutrient concentrations of overstorey and understorey Norway spruce (Picea abies (L.) Karst.), and height growth and needle weights of understorey saplings, were studied in a seven-year period after harvest. The following treatments were applied on each of three sites five years prior to needle sampling: control with no cutting, partial cutting with 50-60 % removal of basal area, and patch cut (25 x 25 m - 0.063 ha clear-cut). Saplings on control plots had higher concentrations of K and Cu in current-year needles (C) than overstorey trees. Increased harvest intensity led to a reduction of K in C- needles and Mg in (C+1)-needles of saplings, and of B in both saplings (C, C+1) and overstorey trees (C+1). Sapling needle weights generally increased with harvest intensity, whereas no effect of foliage N status on needle weights could be detected. The growth response of saplings was explained by the interaction between foliage N status, quantified as average N concentration in C- and (C+1)-needles, and harvest intensity. The results illustrate that sufficient N supply is a key factor for the ability of advance regeneration to utilize the improved light condition associated with overstorey removal.

Abstract

The risk of logging damage to residual trees (height >3.0 m) and advance regeneration saplings (height 0.5–3.0 m) was evaluated after mechanized (single-grip harvesters + forwarders) and motor-manual (chain saw + skidding) selection harvesting in studies I and II. Harvesting took place during the winter season. Mechanized harvesting caused the highest injury rates, and the difference was highest at high cutting intensity in densely stocked stands. Another important difference between the two operating methods was the spatial distribution of the injury risk relative to striproads. The most important injuries on the larger (>3.0 m) trees were stem- and root wounds, and loss of branches. Wounds tended to be larger, and crown injuries more serious, after mechanized harvesting, but differences were not statistically significant. The most frequent injuries on saplings were crown injuries (loss of branches, stem breakage) and stem lean. In motor-manually harvested stands saplings without pre-harvest deformities in the form of top- or leader defects were more prone to damage than saplings with such defects. A similar difference was not found in stands subjected to mechanized harvesting. This result was attributed to the different work patterns during felling and processing with the two operating methods, in combination with the spatial distribution of saplings of different quality relative to larger trees and stand openings. In study III sapling mortality, and recovery from logging damage in a five-year period after selection harvesting, was investigated. Mortality on the different plots (n=11) was highly variable. For saplings without previous logging damage mortality was related to pre-harvest vigour, and increased with increasing cutting intensity in the immediate surrounding of the sapling. Unspecified site factors also contributed to explain the probability of mortality. Saplings that had been pushed over during harvesting often survived and recovered, while injuries to the crown led to poor survival. Crown injuries were most common on plots subjected to mechanized harvesting, while stem lean was correspondingly important on motor-manually harvested plots. Whether this pattern was attributed to differences in temperature at the time of harvesting (winter), or operating method, is uncertain. In study IV advance regeneration responses in terms of height growth, needle dry weights, and foliar nutrient concentrations were compared after three different release treatments: untouched control, selection harvesting with 50-60 % removal of basal area (BA50-60), and patch cut (25x25 m - 0.063 ha clear-cut). The foliar analyses were carried out five years after treatment, and included dominant and co-dominant (overstorey) trees on control and BA50-60 plots. Height growth and needle dry weights of saplings generally increased with increasing overstorey removal. The growth response was explained by an interaction of foliar nitrogen concentration in current (C) and one-year-old (C+1) needles, and degree of overstorey removal. The foliar analyses did, however, not confirm improved N status after cutting. Increasing overstorey removal led to a reduction of K (C), Mg (C+1) and B (C, C+1) in saplings. A parallel decline of B (C+1) occurred in the overstorey trees (BA50-60). Saplings on control plots had higher concentrations of K and Cu in C-needles, relative to overstorey trees. The influence of neighbour tree basal area on sapling height growth and presence of natural defects (top- and leader damage) was examined in study V. The three stands selected for the study had not been subjected to cutting for several decades, and basal areas ranged from 25–33 m2 ha-1. The relationship between growth and four basal area variables was evaluated: basal area (m2 ha-1) of taller (>3.0 m) neighbour trees within 2.82, 3.99 and 5.64 m radius from the sapling (25, 50 and 100 m2 circular plots), and basal area (m2) of trees within 5.64 m radius weighted according to distance from the sapling. A reduction of growth attributed to increasing basal area of neighbour trees was only observed for the tallest saplings (2.1-3.0 m). Between 33 and 42 % of the saplings had leader- or top defects, and damage frequencies increased with declining distance to the nearest taller neighbour tree.