Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

2017

Abstract

Ash dieback, caused by the ascomycete Hymenoscyphus fraxineus, has been spreading throughout Europe since the early 1990s, threatening European ash at a continental scale. Little is known about the development of the disease in individual forest trees and in different age classes. In this study we monitored ash dieback on trees of different diameter classes in five permanent plots in ash stands in south-eastern Norway from 2009 to 2016, and from 2012 to 2016 in three plots in western Norway with a shorter disease history. Our results showed that more than 80% of the youngest and more than 40% of the intermediate future crop trees in the plots in south-eastern Norway were dead by 2016, while the disease development in large, dominant trees was slower. Although less damage has been observed in the plots in western Norway, the trend for the juvenile trees is the same as in south-eastern Norway with rapidly increasing damage and mortality. Most dead trees in south-eastern Norway were found at sites with high soil moisture and showed symptoms of root-rot caused by Armillaria species. Infected trees, both young and old ones, are weakened by the disease and appear to be more susceptible to other, secondary pathogens, especially under unfavourable site conditions.

Abstract

In Norway the common ash (Fraxinus excelsior L.) has its northernmost distribution in Europe. It grows along the coastal range as small fragmented populations. The first occurrence of ash dieback caused by Hymenoscyphus fraxineus in Norway was reported in 2008. At that time, the disease had already spread through large areas of southern and south-eastern parts of Norway. Since then the disease continued spreading with a speed of about 50- 60 km per year along the western coastal range. To monitor the disease development over time, we established eight permanent monitoring plots in south-eastern and western Norway in 2009 and 2012, respectively. In all plots tree mortality was high, especially among the youngest trees in south-eastern Norway. The extent of crown damage has continually increased in all diameter classes for both regions. In 2009, 76.8 % of all trees on the five monitoring plots in south-eastern Norway were considered to be healthy or slightly damaged, and only 8.9 % to be severely damaged. In 2015, 51.7 % were dead, 13.5 % severely damaged and only 25.7 % remained healthy or slightly damaged. To assess the infection pressure and spore dispersal patterns of the pathogen, we used a Burkard volumetric spore sampler placed in an infested ash stand in southern Norway. We examined the airborne ascospores of H. fraxineus and H. albidus captured on the sampling tape microscopically and with real-time PCR assays specific to these fungi. We detected very few ascospores of H. albidus, whereas ascospores of H. fraxineus dominated throughout entire sampling periods of 2009, 2010 and 2011. Spore discharge occurred mainly between the hours of 5 and 8 a.m., though the distinctive sporulation had yearly variation between 5-7 a.m. We observed the same diurnal pattern throughout the entire sampling period, with a seasonal peak in spore liberation between mid-July and midAugust, after which the number of ascospores decreased substantially. Similar diurnal patterns were observed throughout the sampling period except that after mid-August the number of trapped ascospores substantially decreased. To compare the genetic pattern of common ash in the northern and central ranges of Europe we analyzed the Norwegian samples together with available samples from central Europe by using chloroplast and nuclear microsatellite markers. We found that the northern range of common ash was colonized via a single migration route that originated in eastern or south-eastern Europe with little influence originating from other southern or western European refugia. In the northern range margins, genetic diversity decreased and population differentiation increased, coherent with a post-glacial colonization history characterized by founder events and population fluctuations. Based on our findings we discuss the future management and conservational implications.

Abstract

Over the recent decades, the Norwegian cereal industry has had major practical and financial challenges associated with the occurrence of Fusarium and mycotoxins in cereal grains. From 2011, payment reductions to farmers were implemented for oat grain lots with high levels of deoxynivalenol (DON). However, according to preliminary results by NIBIO, NMBU and Graminor, certain oat varieties with generally medium or low DON contamination, may contain high levels of HT-2 and T-2-toxins (HT2+T2). These mycotoxins, formed by Fusarium langsethiae, are considerably more toxic than DON. Resistance to F. langsethiae is not included in the variety screening in Norway. In 2016 a new project, SafeOats, was initiated. This project is led by NIBIO and is a collaboration between NIBIO, NMBU, Kimen, and the main Norwegian and Swedish breeding companies, Graminor and Lantmännen. Harper Adam University (UK) and Julius Kühn-Institut (Germany) are international collaborators. SafeOats will develop resistance screening methods in order to facilitate the phase-out of susceptible oat germplasm. Furthermore, SafeOats will give new insight into the biology of F. langsethiae and HT2+T2 accumulation in oats, and thus facilitate the choice of relevant control measures. The results from SafeOats will benefit consumers nationally and internationally by providing tools to increase the share of high quality grain into the food and feed industry. SafeOats is financed by The Foundation for Research Levy on Agricultural Products/Agricultural Agreement Research Fund/Research Council of Norway with support from the industry partners Graminor, Lantmännen, Kimen, Felleskjøpet Agri, Felleskjøpet Rogaland Agder, Fiskå Mølle Moss, Norgesmøllene and Strand Unikorn/Norgesfor.

To document

Abstract

Dieback of European ash (Fraxinus excelsior L.), a disease caused by the ascomycete Hymenoscyphus fraxineus (previously referred to as H. pseudoalbidus or Chalara fraxinea), was first observed in Poland in the early 1990ies, and is currently present almost throughout the entire distribution area of European ash. The characteristic symptoms of the disease include dead shoots with necrotic lesions in the bark and discoloration of xylem and pith but the seasonal dynamics of pathogen spread in shoot tissues remain poorly understood. To investigate whether the internal spread of the fungus involves season-specific patterns, saplings with necrotic bark lesions in 1-2 -year-old stem regions were collected during 2014-2015 at time intervals in spring, summer, autumn and winter at several localities in western Ukraine and at two localities in south-eastern Norway. Tissuespecific presence of H. fraxineus was determined by a highly sensitive quantitative real-time PCR assay that is specific to DNA of H. fraxineus. The relatively high proportion of bark samples positive for H. fraxineus in the saplings collected during spring provides support to a model that H. fraxineus can be a primary causative agent of bark lesions and that other fungi may eventually replace it in old infection areas.