Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The relationship between the ecological success of needle pathogens of forest trees and species richness of co-inhabiting endophytic fungi is poorly understood. One of the most dangerous foliar pathogens of pine is Dothistroma septosporum, which is a widely spread threat to northern European forests. We sampled two Pinus sylvestris sites in Estonia and two in Norway in order to analyse the relations between the abundance of D. septosporum and overall fungal richness, specific fungal species composition, time of season, needle age and position in the canopy. In both countries, the overall species richness of fungi was highest in autumn, showing a trend of increase with needle age. The overall species richness in the second-year needles in Estonia and third-year needles in Norway was similar, suggesting that a critical colonization threshold for needle shed in P. sylvestris is breached earlier in Estonia than in Norway. The fungal species richness in P. sylvestris needles was largely affected by Lophodermium conigenum. Especially in older needles, the relative abundance of L. conigenum was significantly higher in spring compared to summer or autumn. The timing of recruitment and colonization mechanisms of different foliage endophytes are shortly discussed.

To document

Abstract

Silverleaf is an important fungal trunk disease of fruit crops, such as Japanese plum (Prunus salicina). It is known that infection by Chondrostereum purpureum results in discolored wood, “silvered” foliage, and tree decline. However, effects on fruit yield and quality have not been assessed. Therefore, the objectives of this study were to determine C. purpureum pathogenicity on P. salicina and the effects on physiology, fruit yield, and quality, in Chile, in 2019 and 2020. Wood samples from affected plum trees were collected in the Chilean plum productive area. Fungi were isolated by plating wood sections from the necrosis margin on culture media. Morphological and molecular characteristics of the isolates corresponded to C. purpureum (98%). Representative isolates were inoculated from healthy plum plants and after 65-d incubation, wood necrotic lesions and silver leaves were visible. Fungi were reisolated, fulfilling Koch’s postulates. To determine Silverleaf effects, xylem water potential and fruit yield and quality were measured in healthy and Silverleaf-diseased plum trees ‘Angeleno’. Water potential was altered in diseased trees, and fruit yield was reduced by 51% (2019) and by 41% (2020) compared to fruit from healthy trees. Moreover, cover-colour, equatorial-diameter, and weight were reduced, and fruit were softer, failing to meet the criteria to be properly commercialized and exported to demanding markets.

To document

Abstract

Plant diseases may survive and be spread by infected seeds. In this study we monitored the longevity of 14 seed-borne pathogens in 9 crop species commonly grown in the Nordic countries, in addition to a sample of sclerotia of Sclerotinia sclerotiorum. The data from the first 30 years of a 100-year seed storage experiment located in a natural −3.5 °C environment (permafrost) in Svalbard, Norway, are presented. To date, the pathogens, tested by traditional seed health testing methods (freezing blotter, agar plates, growing on tests), have survived. Linear regression analyses showed that the seed infection percentages of Drechslera dictyoides in meadow fescue, Drechslera phlei in timothy, and Septoria nodorum in wheat were significantly reduced compared to the percentages at the start of the experiment (from 63% to 34%, from 70% to 65%, and from 15% to 1%, respectively), and that Phoma betae in beet had increased significantly (from 43% to 56%). No trends in the infection percentage were observed over the years in Drechslera spp. in barley (fluctuating between 30% and 64%) or in Alternaria brassicicola in cabbage (fluctuating between 82% and 99%), nor in pathogens with low seed infection percentages at the start of the experiment. A major part of the stored sclerotia was viable after 30 years. To avoid the spread of seed-borne diseases, it is recommended that gene banks implement routines that avoid the use of infected seeds.

To document

Abstract

This study explores cell wall changes in Radiata pine (Pinus radiata) after modification with acetylation or furfurylation and subsequent prolonged subjection to the brown rot fungus R. placenta with the aim of better understanding the modus operandi of these two modifications. Both modifications have shown good durability in field tests, but in order to learn from their possible limitations, we used optimal environmental conditions for fungal growth, and extended the testing period compared to standard tests. Hyphae were found in acetylated wood after two weeks, and after 28 weeks of decay abundant amounts of encapsulated hyphae were present. In furfurylated wood, mass loss and a few hyphae were seen initially, but no further development was seen during weeks 18–42. The general degradation pattern was qualitatively the same for unmodified, acetylated and furfurylated wood: carbohydrates decreased relative to lignin. Acetyl groups were lost from acetylated wood during decay (earlier results), while the furan polymer did not seem to be altered by the fungus. Based on these findings it is hypothesized that modifications such as furfurylation that enhance moisture exclusion within the cell wall through impregnation polymerization offer better long term protection compared to modifications such as acetylation that depend on the replacement of hydroxyl groups with ether bound adducts that can be removed by fungi.