Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2006

To document

Abstract

Twenty-five tree species were recorded as hosts for five European Armillaria species in studies on forest ecosystems in Serbia. Armillaria was most frequently isolated from the conifers Picea abies and Abies alba and from the deciduous trees Fagus moesiaca and Quercus petraea. A. mellea and A. gallica coexisted in hardwood forests in northern and central parts of Serbia, while A. ostoyae and A. cepistipes were mostly present in coniferous forests in the southern mountain region of Serbia. The distribution depended on the Armillaria species, altitude, and the forest type.

Abstract

To identify chemical resistant markers induced by fungal or mechanical injury, young trees of Scots pine (Pinus sylvestris) were subjected to inoculations of blue stain fungi associated with the pine shoot beetles Tomicus piniperda and T. minor. Among the 20 trees selected for chemical analyses, 16 were divided into four groups: one as control and three were pretreated by wounding only, or by inoculation with either the blue stain fungus Leptographium wingfieldii or Ophiostoma canum.Four wk after pretreatment, all 16 pretreated trees were mass-inoculated with L. wingfieldii. The absolute and relative amounts, as well as the enantiomeric compositions of monoterpene hydrocarbons in the phloem, were determined via a small sample of the phloem before and after the pretreatment and mass inoculation, by using two-dimensional gas chromatography (2D GC) and GC-mass spectrometry (MS).After mass inoculation, the absolute amounts of most of the monoterpenes decreased in the phloem sampled 20 cm from the fungal infection, and were higher in the phloem sampled within the infected reaction zone.The relative amounts of both ()--pinene and ()-limonene increased in phloem samples taken 20 cm above the fungal inoculation in the preinoculated trees compared with phloem sampled from the remaining four control trees. The enantiomeric compositions of -pinene and limonene changed, after fungal growth, at defined distances from the inoculation site: the proportion of the ()-enantiomers was highest in the phloem sampled 20 cm from the fungal inoculation.Four wk after pretreatment, monoterpene production in the phloem at the site of inoculation was more enhanced by L. wingfieldii than by O. canum. However, the different virulence levels of the fungi did not affect the enantiomeric composition of the monoterpenes. The biosynthesis of monoterpene enantiomers is discussed in relation to induced pathogen resistance.

Abstract

Fine root production, respiration, longevity and mortality are the major processes in carbon dynamics of the forest soils. The objective of the present work was to determine fine root biomass, respiration and root longevity. The study was carried out at a ten year-old stand of planted Norway spruce (Picea abies) (a clearcut, dominated by natural regrowth of Scots pine and birch) and three stands of Norway spruce, approximately 30, 60 and 120 years old, during 2001 and 2002. The stands were located at Nordmoen, a plain of sandy deposits in southeast Norway.Root biomass of both trees and understorey vegetation (0-1, 1-2 and 2-5 mm in diameter) in the humus layer and mineral soil horizons (to depth of 60 cm) was sampled by soil coring. Root respiration was performed in situ, by measuring the CO2 of excavated fine roots by using the CIRAS-I portable gas analyser. For the root turnover study, altogether 60 minirhizotrones were installed and images were processed. Root biomass and necromass (g m-2), specific root length (SRL, m g -1), root length density (RLD, cm cm-3), number of root-tips and mean longevity (y) were estimated.Root biomass was 2-3 times higher in the mineral soil than in the humus horizon. Compared with other stands, root biomass, SRL, RLD and the number of root tips were highest in the 30-year-old stand. At the 10 and 120 year-old stands understorey vegetation roots counted for 70 and 40% of total root biomass, respectively. The amount of necromass at 60 year-old stand was about twice as high (45%) compared to other stands.Root respiration (g C/min./g roots) was significantly lowest at 10-year-old stand. Root respiration among 30, 60 and 120 year-old stands was not significantly different, but it was highest in the 60-year-old stand. The respiration varied seasonally, with high peaks during the summer and lower values during the spring and autumn. Fine root longevity of tree and understorey roots at the 10-year-old stand were 1.2 and 1.4 years, respectively.It is concluded that stand age may influence the dynamics of the fine roots. The complexity of influences will be discussed.

Abstract

The minirhizotron technique provides the opportunity to perform in situ measurements of fine root dynamics and obtain accurate estimates of fine root production and turnover. The objective of the present work was to determine the fine root longevity and mycorrhization in a Norway spruce chronosequence. The study was carried out on four stands of planted Norway spruce (Picea abies), approximately 10, 30, 60 and 120 years old, during 2001 and 2002. The stands were located at Nordmoen, a plain of sandy deposits in southeast Norway (60o15 N, 11o06 E). For the root turnover study, altogether 60 minirhizotrones were installed and images were processed.Individual fine roots were identified, their mycorrhization assessed, appearance and possible disappearance dated, and growth in length measured. The data set was subjected to a survival analysis, using a Kaplan-Meier product-limit approach. The minirhizotron samples were stratified according to stand age class, and Coxs F-test was used to analyze differences in survival estimates. The analysis may also be extended to consider other covariates such as tree species (spruce, pine or birch), understory vegetation, or soil depth. Typical survival function estimates will be presented, and the influence of stand age on the mycorrhization and the dynamics of the fine roots will be discussed.

Abstract

The root-rot causing fungus Heterobasidion annosum can attack both spruce and pine trees and is the economically most damaging pathogen in northern European forestry. We have monitored the H. annosum S-type (fairly recently named H. parviporum) colonization rate and expression of host chitinases and other host transcripts in Norway spruce material with differing resistances using quatitative realtime PCR. Transcript levels of three chitinases, representing classes I, II and IV, were monitored. Ramets of two 33-year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of pathogen perception and host defense signal transduction. This an earlier experiments using mature spruce clones as substrate indicate that it is the speed of the host response and not maximum amplitude of the host response that is the most crucial component in an efficient defense in Norway spruce toward pathogenic fungi such as H. annosum.