Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2008

Abstract

Induced reactions in the phloem is a basic mechanism of conifer resistance to bark beetle and their associated fungi (1,2). Previous research has proved that certain doses of Ceratocystis polonica infection or methyl jasmonate (MeJA) application could induce acquired resistance and decrease subsequent fungal or bark beetle colonization (3,4,5). To study the induced chemical changes after fungal infection and MeJA application in the phloem of mature Norway spruce, three groups, each of 24 P. abies trees of similar size, were chosen in Tönnersjöheden, southern Sweden, in May 2006. The three groups were then inoculated with C. polonica, sprayed with MeJA, or used as untreated control, respectively. Phloem samples were taken twice from each tree: on the same day as treatment and 1 mo later. The terpene composition of all the samples was analyzed by GC-MS, and the enantiomeric compositions of α-pinene, β-pinene, and limonene were analyzed by 2D-GC (6). The result indicated that both MeJA application and C. polonica infection had certain effects on the terpene composition. C. polonica infection significantly increased the biosynthesis of 3-carene, sabinene, and terpinolene. Both mean absolute amounts and relative amounts of these monoterpenes increased in samples from fungus inoculated trees, similar to what is observed in Scots pine after Leptographium wingfieldii inoculation (7). MeJA application increased the absolute amount of α-pinene, β-pinene, limonene, and some other major terpenes, but it did not change the relative amount of these terpenes. However, neither MeJA application nor fungal infection changed the enantiomeric compositions of α-pinene, β-pinene, and limonene in the phloem of Norway spruce.

Abstract

The root-rot causing fungus Heterobasidion annosum sensu lato is the most devastating pathogen of conifers in Europe. This pathogen enters Norway spruce through the roots and can colonize the tree from within, growing as a saprophyte when established within the dead heartwood and acting as a necrotroph when in contact with living host tissue. Despite the high incidence of damage, trees have defences against this pathogen in the bark and living wood. Furthermore, spruce has a defense against internal attack by forming a reaction zone, in this case the host defense is directed inwardly by the still living sapwood toward the central colonized heartwood. We have studied the host responses to infection in Norway spruce clones at the transcriptional level and found that the speed of recognition and that spatial defense signalling appears to be the hallmarks of trees with high degree of resistance...

Abstract

Due to the great economic losses caused by the root and butt-rot pathogen Heterobasidion annosum, developments of efficient control measures are warranted. H. annosum a necrotroph colonize the Norway spruce from inside and is responsible of 10-13 millions Euros losses in Norway alone. Considerable clonal variation has been recorded for Norway spruce in resistance towards H. annosum, but the defence mechanisms contributing to host resistance remain poorly understood. The recent genome sequencing of Populus has made the genus a model to facilitate tree genetics. Genome-wide transcript profiling of Populus tremula upon pathogen attack will now be used, and homologues of Norway spruce genes to defence genes up-regulated in Populus will be identified. Populus-Phellinus tremula pathosystem is selected as P. tremula behaves like H. annosum.

To document

Abstract

The main Avena species that are important weeds of cereal and arable crops include A. fatua L., A. sterilis and A. barbata Pott. All three species have an abscission scar on the grains. A risk assessment of A. fatua L. as an indirect pest in Norway is given in a separate document. For both A. sterilis ssp. macrocarpa and ssp. maxima, and for A. barbata Pott, the potential for entry and establishment in Norway is considered as very low. A. sterilis ssp. ludoviciana (winter wild oats) has a moderate potential for establishment in Norway. The suitability of the environment for A. sterilis ssp. ludoviciana was therefore investigated: Our assessment of the probability of establishment indicates that the climate is not favourable for establishment of A. sterilis ssp. ludoviciana in Norway. A. sterilis ssp. ludoviciana is a problem in southern Europe and central southern England and is mainly a weed in winter cereals. While it is highly likely that the probability of establishment of A. sterilis ssp. ludoviciana has increased in Norway in recent years due to climate change and consequent changes in cultural practices, its probability of establishment in Norway is still low and it is therefore not likely that it will become a weed in Norway under current conditions. However, if the future climate of the PRA area changes, so that winter conditions become similar to conditions in southern England, while the acreage of winter cereal continues to grow, A. sterilis ssp. ludoviciana could become a weed in Norway. A. sterilis ssp. ludoviciana is not present in Denmark where winter cereals are much more widely cultivated, and the climate is more favourable than in Norway. One would therefore expect the weed to establish in Denmark before it will become a problem in Norway