Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Abstract

The worldwide decline in bees and other pollinating insects is a threat to biodiversity and food security, and urgent action must be taken to stop and then reverse this decline. An established cause of the insect decline is the use of harmful pesticides in agriculture. This case study focuses on the use of pesticides in Norwegian apple production and considers who among farmers, consumers and public authorities is most responsible for protecting bees against harmful pesticides. The extent to which these three different groups consider themselves responsible and the degree to which they are trusted by each of the other groups are also studied. This empirical study involves both qualitative interviews with Norwegian apple farmers, consumers and public authorities and survey data from consumers and farmers. The results show that consumers consider public authorities and farmers equally responsible for protecting bees, while farmers are inclined to consider themselves more responsible. Farmers, consumers and public authorities do not consider consumers significantly responsible for protecting bees, and consumers have a high level of trust in both farmers and public authorities regarding this matter. This study also finds that a low level of consumer trust in farmers or public authorities increases consumers’ propensity to purchase organic food, suggesting that those who do not trust that enough action is adopted to protect the environment take on more individual responsibility. This paper adds to the existing literature concerning the allocation of responsibility for environmental outcomes, with empirical evidence focusing specifically on pesticides and bees.

To document

Abstract

Field experiments were conducted in 2015 and 2016 to study the effect of tillage frequency, seed rate, and glyphosate on teff and weeds. The experiments were arranged in a split plot design with three replications consisting of tillage frequency (conventional, minimum, and zero tillage) as the main plot and the combination of seed rate (5, 15, and 25 kg ha−1) and glyphosate (with and without) as subplots. Results showed that zero tillage reduced teff biomass yield by 15% compared to minimum tillage and by 26% compared to conventional tillage. Zero tillage and minimum tillage also diminished grain yield by 21% and 13%, respectively, compared to conventional tillage. Lowering the seed rate to 5 kg ha−1 reduced biomass yield by 22% and 26% compared to 15 and 25 kg ha−1, respectively. It also reduced the grain yield by around 21% compared to 15 and 25 kg ha−1 seed rates. Conventional tillage significantly diminished weed density, dry weight, and cover by 19%, 29%, and 33%, respectively, compared to zero tillage. The highest seed rate significantly reduced total weed density, dry weight, and cover by 18%, 19%, and 15%, respectively, compared to the lowest seed rate. Glyphosate did not affect weed density but reduced weed dry weight by 14% and cover by 15%. Generally, sowing teff using minimum tillage combined with glyphosate application and seed rate of 15 kg ha−1 enhanced its productivity and minimized weed effects.

2021

Abstract

Eradication of alien invasive species in the soil with steam as an alternative to chemical fumigation may allow contaminated soil to be reused. We have investigated steam disinfestation of soil to combat invasive plant species in three experiments including different temperatures and exposure durations using a prototype stationary soil-steaming device. The experiments included effects on seed germination of bigleaf lupine (Lupinus polyphyllus Lindl.), ornamental jewelweed (Impatiens glandulifera Royle), and wild oat (Avena fatua L.; one population from Poland and one from Norway), as well as effects on sprouting rhizome fragments of Canada goldenrod (Solidago canadensis L.) and Bohemian knotweed (Reynoutria x bohemica Chrtek & Chrtková). In Experiment 1, we tested four different soil temperatures of 64, 75, 79, and 98 C with an exposure duration of 90 s. In Experiments 2 and 3, we tested exposure durations of 30, 90, and 180 s and 90, 180, and 540 s, respectively, at 98 C. Seed pretreatment of 14 d cooling for L. polyphyllus and I. glandulifera, no seed pretreatment and 12-h moistening for A. fatua populations, and 5- and 10-cm cutting size for R. x bohemica were applied. Our results showed germination/sprouting was inhibited at 75 C for I. glandulifera (for 90 s) and 98 C for the other species; however, longer exposure duration was needed for L. polyphyllus. While 30 s at 98 C was enough to kill A. fatua seeds and S. canadensis and R. x bohemica rhizome fragments, 180-s exposure duration was needed to kill L. polyphyllus seeds. The results showed promising control levels of invasive plant propagules in contaminated soil by steaming, supporting the steam treatment method as a potential way of disinfecting soil to prevent dispersal of invasive species.

To document

Abstract

(1) We document the invertebrate fauna collected from 24 oak canopies in east and west Norway as a contribution to the Norwegian Biodiversity Information Centre’s ‘The Norwegian Taxonomy Initiative’. (2) A snap-shot inventory of the canopies was recorded by means of emitting a mist of natural pyrethrum into the canopies at night using a petrol-driven fogger and collecting the specimens in butterfly nets spread on the ground under the canopy. (3) Almost the entire catch of more than 6800 specimens was identified to 722 species. Out of 92 species new to the Norwegian fauna, 21 were new to science and, additionally, 15 were new to the Nordic fauna. Diptera alone constituted nearly half of the species represented, with 61 new records (18 new species). Additionally, 24 Hymenoptera (one new species), six oribatid mites (two new species) and one Thysanoptera were new to the Norwegian fauna. (4) Our study emphasizes the importance of the oak tree as a habitat both for a specific fauna and occasional visitors, and it demonstrates that the canopy fogging technique is an efficient way to find the ‘hidden fauna’ of Norwegian forests. The low number of red listed species found reflects how poor the Norwegian insect fauna is still studied. Moreover, the implication of the IUCN red list criteria for newly described or newly observed species is discussed.

To document

Abstract

Coconut is recognized for its popularity in contributing to food and nutritional security. It generates income and helps to improve rural livelihood. However, these benefits are constrained by lethal yellowing disease (LYD). A clear understanding of climate suitable areas for disease invasion is essential for implementing quarantine measures. Therefore, we used a machine learning algorithm based on maximum entropy to model and map habitat suitability of LYD and coconut under current and future climate change scenarios using three Shared Socio-economic Pathways (SSPs) (1.26, 3.70 and 5.85) for three time periods (2041–2060, 2061–2080 and 2081–2100). Outside its current range, the model projected habitat suitability of LYD in Australia, Asia and South America. The distribution of coconut exceeded that of LYD. The area under the curve value of 0.98 was recorded for LYD, whereas 0.87 was obtained for the coconut model. The predictor variables that most influenced LYD projections were minimum temperature of the coldest month (88.4%) and precipitation of the warmest quarter (7.3%), whereas minimum temperature of the coldest month (85.9%) and temperature seasonality (8.7%) contributed most to the coconut model. Our study highlights potential climate suitable areas of LYD and coconut, and provides useful information for increasing quarantine measures and developing resistant or tolerant coconut varieties against the disease. Also, our study establishes an approach to model the climatic suitability for surveillance and monitoring of the disease, especially in areas that the disease has not been reported.

To document

Abstract

Many herbaceous perennial plant species gain significant competitive advantages from their underground creeping storage and proliferation organs (CR), making them more likely to become successful weeds or invasive plants. To develop efficient control methods against such invasive or weedy creeping perennial plants, it is necessary to identify when the dry weight minimum of their CR (CR DWmin) occurs. Moreover, it is of interest to determine how the timing of CR DWmin differs in species with different light requirements at different light levels. The CR DWmin of Aegopodium podagraria, Elymus repens and Sonchus arvensis were studied in climate chambers under two light levels (100 and 250 μmol m−2 s−1), and Reynoutria japonica, R. sachaliensis and R. × bohemica under one light level (250 μmol m−2 s−1). Under 250 μmol m−2 s−1, the CR DWmin occurred before one fully developed leaf in R. sachaliensis, around 1–2 leaves in A. podagraria and E. repens and around four leaves in S. arvensis, R. japonica and R. × bohemica. In addition to reducing growth in all species, less light resulted in a higher shoot mass fraction in E. repens and S. arvensis, but not A. podagraria; and it delayed the CR DWmin in E. repens, but not S. arvensis. Only 65% of planted A. podagragra rhizomes produced shoots. Beyond the CR DWmin, Reynoutria spp. reinvested in their old CR, while the other species primarily produced new CR. We conclude that A. podagraria, R. sachaliensis and E. repens are vulnerable to control efforts at an earlier developmental stage than S. arvensis, R. japonica and R. × bohemica.