Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Chapter 9 begins with a brief introduction followed by a conceptual framework showing the linkages and interactions between different institutional, market, and policy factors affecting adoption of climate-neutral and resilient farming systems in the agriculture sector. The chapter then discusses the barriers for adoption, which operate at various levels in the value chains (VCs). The role played by stakeholders (VC actors, farmers’ group, research, government agencies, and donors) in the farmers’ adoption and the dynamics and partnerships to be developed between different VC actors for upscaling CNRFS is analyzed. Experiences from case studies in Africa (Kenya and Rwanda) are shared, demonstrating how strategies to overcome weaknesses and adoption barriers in the selected value chain together with the support of multi-actor partnerships. Toward the end, some concluding remarks and policy recommendations for upscaling CNRFS are provided.

To document

Abstract

Hydrologic models are indispensable tools for water resource planning and management. Accurate model predictions are critical for better water resource development and management decisions. Single-site model calibration and calibrating a watershed model at the watershed outlet are commonly adopted strategies. In the present study, for the first time, a multi-site calibration for the Soil and Water Assessment Tool (SWAT) in the Kelani River Basin with a catchment area of about 2340 km2 was carried out. The SWAT model was calibrated at five streamflow gauging stations, Deraniyagala, Kithulgala, Holombuwa, Glencourse, and Hanwella, with drainage areas of 183, 383, 155, 1463, and 1782 km2, respectively, using three distinct calibration strategies. These strategies were, utilizing (1) data from downstream and (2) data from upstream, both categorized here as single-site calibration, and (3) data from downstream and upstream (multi-site calibration). Considering the performance of the model during the calibration period, which was examined using the statistical indices R2 and NSE, the model performance at Holombuwa was upgraded from “good” to “very good” with the multi-site calibration technique. Simultaneously, the PBIAS at Hanwella and Kithulgala improved from “unsatisfactory” to “satisfactory” and “satisfactory” to “good” model performance, while the RSR improved from “good” to “very good” model performance at Deraniyagala, indicating the innovative multi-site calibration approach demonstrated a significant improvement in the results. Hence, this study will provide valuable insights for hydrological modelers to determine the most appropriate calibration strategy for their large-scale watersheds, considering the spatial variation of the watershed characteristics, thereby reducing the uncertainty in hydrologic predictions.

To document

Abstract

The species composition of benthic algae changes as water phosphorus concentrations increase, and these changes can be used for ecological status assessment according to the Water Framework Directive. Natural background phosphorus concentrations in rivers and streams that are unaffected by anthropogenic impacts are usually low. Running waters draining catchments with deposits of marine clay, however, may have enhanced phosphorus concentrations, because the clay is naturally rich in apatite. Almost all clay rich areas have been cultivated for centuries, however, and fertilization has increased the soil phosphorus levels. It has, therefore, been difficult to disentangle natural from anthropogenically enhanced phosphorus in streams draining clay rich areas. We compared water phosphorus concentrations, and the Periphyton Index of Trophic Status PIT, between clay and non-clay, impacted and unimpacted rivers in Norway. We found that water phosphorus concentrations and the PIT index were higher in unimpacted clay rivers than in unimpacted non-clay rivers, indicating that natural phosphorus concentrations in clay rivers are indeed enhanced compared to rivers without deposits of marine clay. In addition, phosphate-P contributed 18–23% to total phosphorus in unimpacted clay rivers, but 33–37% in unimpacted and impacted non-clay rivers and clay rivers affected by agriculture. This indicates that the total phosphorus in unimpacted clay rivers is less bioavailable than in non-clay rivers and in impacted clay rivers. Water total phosphorus concentrations in unimpacted clay rivers significantly increased with catchment clay cover. Based on these findings, we derived new status class boundaries for the PIT index in clay rivers. Clay rivers are suggested to be assessed in only two status classes, i.e., “good or better” or “moderate or worse”, respectively. The good/moderate status class boundary for the PIT index was shown to increase with increasing catchment clay cover.

Abstract

This report introduces a framework and scale specific guidelines for the parameterization of Natural/Small Water Retention Measures (NSWRM) in modelling approaches. More specifically, it provides a detailed translation of NSWRM into parameters and design approaches for the application in the SWAT+ (catchment scale) and SWAP (field-scale) models, which were selected as the main modelling tools in the OPTAIN project. This document can also be considered as an extension of the well-known Conservation Practice Modelling Guide for SWAT and APEX (Waidler et al., 2011), which is frequently used by the SWAT modelling community for testing the effectiveness of conservation practices. However, besides of conservation practices, the report focuses mainly on NSWRMs, and how they can be implemented in SWAT+, the new and restructured version of SWAT. Analogously, the NSWRM parameters are also described for the SWAP model, which is addressing the field-scale. Compared to previous NSWRM modelling approaches, this methodology enables the setting of NSWRM parameters in the two selected models to improve the description of the related hydrological and hydrochemical processes.

Abstract

This chapter presents an overview of the current climate crisis, major sources of GHG emissions, and impacts from the agriculture sector contributing to global warming. Further, the chapter discusses the challenges in reducing GHG emissions from the agriculture sector. Major changes in the agriculture sector would be required if the impact due to climate change is to be limited to 1.5°C target. According to the authors, overcoming the challenges to reduce GHG emissions in the agriculture sector will require specific technological, investment, and policy solutions suitable for different agro-ecological and socio-economic settings. These solutions must be designed and implemented at different scales, both for developed and developing countries, for large- and small-scale farms, and should be sustainable, environmentally, socially, and economically. The chapter discusses the major challenges of the current farming systems, followed by a review of design approaches and pathways for a transition towards sustainable CNRFS. Towards the end, the chapter provides a brief outline of the book and justification.

To document

Abstract

How can agroecological research methods effectively engage smallholder farmers, who provide over half of the world’s food supply, and whose farm management activities have significant impacts on biodiversity and ecosystem services? This question is highly relevant in Malawi where the research took place, but in other low-income countries in Africa with mostly agrarian populations, in which multi-scalar processes drive high food insecurity, alongside declining biodiversity, worsening land degradation and climate change. We analyse an innovative transdisciplinary agroecological approach that attempts to bridge the science-practice-policy gap by examining the potential of agro-ecological measures to enhance functional biodiversity and ecosystem services. This study involves a longitudinal, case-control and participatory research design in a region where thousands of farmers have experimented with agroecological practices, e.g., legume intercropping, composting, and botanical sprays. Innovative transdisciplinary agroecological research activities involved farmer participatory research, ecological monitoring and field experiments, social science methods (both qualitative and quantitative), participatory methodologies (public participatory Geographic Information Systems - PPGIS and scenario planning and testing) and stakeholder engagement to foster science-policy linkages. We discuss the theoretical and methodological implications of this novel transdisciplinary and participatory approach about pluralism, decolonial and translational ecological research to foster sustainability and climate resilience of tropical farming systems.