Remegio Confesor
Research Scientist
(+47) 413 08 567
remegio.confesor@nibio.no
Place
Ås O43
Visiting address
Oluf Thesens vei 43, 1433 Ås
Abstract
No abstract has been registered
Authors
Yong Q. Tian Qian Yu Hunter J. Carrick Brian L. Becker Remegio Confesor Mark Francek Olivia C. AndersonAbstract
No abstract has been registered
Authors
Randika K. Makumbura Miyuru Gunathilake Jayanga T. Samarasinghe Remegio Confesor Nitin Muttil Upaka RathnayakeAbstract
Hydrologic models are indispensable tools for water resource planning and management. Accurate model predictions are critical for better water resource development and management decisions. Single-site model calibration and calibrating a watershed model at the watershed outlet are commonly adopted strategies. In the present study, for the first time, a multi-site calibration for the Soil and Water Assessment Tool (SWAT) in the Kelani River Basin with a catchment area of about 2340 km2 was carried out. The SWAT model was calibrated at five streamflow gauging stations, Deraniyagala, Kithulgala, Holombuwa, Glencourse, and Hanwella, with drainage areas of 183, 383, 155, 1463, and 1782 km2, respectively, using three distinct calibration strategies. These strategies were, utilizing (1) data from downstream and (2) data from upstream, both categorized here as single-site calibration, and (3) data from downstream and upstream (multi-site calibration). Considering the performance of the model during the calibration period, which was examined using the statistical indices R2 and NSE, the model performance at Holombuwa was upgraded from “good” to “very good” with the multi-site calibration technique. Simultaneously, the PBIAS at Hanwella and Kithulgala improved from “unsatisfactory” to “satisfactory” and “satisfactory” to “good” model performance, while the RSR improved from “good” to “very good” model performance at Deraniyagala, indicating the innovative multi-site calibration approach demonstrated a significant improvement in the results. Hence, this study will provide valuable insights for hydrological modelers to determine the most appropriate calibration strategy for their large-scale watersheds, considering the spatial variation of the watershed characteristics, thereby reducing the uncertainty in hydrologic predictions.
Division of Food Production and Society
FoodsecURe: Food security through better sanitation: the case of urine recycling
Human urine contains essential plant nutrients. Hence, urine can serve as a “free” and locally available fertiliser. Successful, low-cost urine-diverting toilets (UDTs) that separately collect urine have been developed in Scandinavia and Europe and manufactured at large scale in Africa. A solution for stabilising urine into a solid fertiliser has also been developed. But why can't we recycle urine at scale? In Sweden UDTs are used in some cottages, and the Swedish University of Agricultural Science (SLU) has developed a method to stabilise and dry urine into a fertiliser product, urine-based fertiliser (UBF). FoodSecure aims to implement this technology at a medium scale in Ethiopia.
Division of Food Production and Society
ECONUTRI
Innovative concepts and technologies for ECOlogically sustainable NUTRIent management in agriculture aiming to prevent, mitigate and eliminate pollution in soils, water and air